Probing chirality with high energy synchrotron light

Vadim Dyadkin European Synchrotron Radiation Facility Grenoble, France

Outline

The European Synchrotron

Phase information

$$\rho(\mathbf{R}) = \rho_A(\mathbf{R}) + \rho_S(\mathbf{R})$$
 Scattering density – two parts

$$F(\mathbf{Q}) = \sum_A f_A(\mathbf{Q}) \exp(i\mathbf{Q}\mathbf{R}_A) + \sum_S f_S(\mathbf{Q}) \exp(i\mathbf{Q}\mathbf{R}_S)$$

$$F(\mathbf{Q}) = F_A(\mathbf{Q}) + F_S(\mathbf{Q})$$
 Structure factor – two parts
Scattered intensity – three contributions

 $I(\mathbf{Q}) \propto |F(\mathbf{Q})|^{2} = |F_{A}(\mathbf{Q})|^{2} + |F_{S}(\mathbf{Q})|^{2} + 2|F_{A}(\mathbf{Q})||F_{S}(\mathbf{Q})|\cos(\phi_{A} - \phi_{S})$

Direct phase information is lost in diffraction experiment but we have the cross-term – and structure solution is possible!

 $\cos(\phi_A - \phi_S)$ Cos is even function....

Anomalously Scattered X-ray -90° phase shift diminished amplitude

Selenium atom Excited state

Incident photon

Scattered photon

 $\mathbf{f} = \mathbf{f}_{o} + \Delta \mathbf{f}' + \mathbf{i} \Delta \mathbf{f}''$

resonant scattering coefficients for Zr

$$\mathbf{f} = \mathbf{f}_{0} + \Delta \mathbf{f}' + \mathbf{i} \Delta \mathbf{f}''$$

$$\rho(\mathbf{R}) = \rho_{J}(\mathbf{R}) + \rho_{K}(\mathbf{R})$$

$$\mathbf{I}$$

$$F(\mathbf{Q}) = \sum_{j} (f_{0}^{j} + \Delta f'^{j}) \exp(i\mathbf{Q}\mathbf{R}_{j}) + i\sum_{k} (\Delta f''^{k}) \exp(i\mathbf{Q}\mathbf{R}_{k})$$

$$i e^{(i\phi)} = e^{(i(\phi + \pi/2))}$$
$$i F_K(\mathbf{Q}) = |F_K(\mathbf{Q})| e^{i(\phi_K + \pi/2)}$$

The European Synchrotron | ESRF

$$\mathbf{f} = \mathbf{f}_{o} + \Delta \mathbf{f}' + \mathbf{i} \Delta \mathbf{f}''$$

$$F(\mathbf{Q}) = F_{J}(\mathbf{Q}) + iF_{K}(\mathbf{Q})$$

$$i e^{(i\phi)} = e^{(i(\phi + \pi/2))}$$

$$i F_{K}(\mathbf{Q}) = |F_{K}(\mathbf{Q})| e^{i(\phi_{K} + \pi/2)}$$

 $I(\mathbf{Q}) = |F(\mathbf{Q})|^{2} = |F_{J}(\mathbf{Q}) + iF_{K}(\mathbf{Q})|^{2}$ $I(\mathbf{Q}) = |F_{J}(\mathbf{Q})|^{2} + |F_{K}(\mathbf{Q})|^{2} + 2|F_{J}(\mathbf{Q})||F_{K}(\mathbf{Q})|\cos(\phi_{J} - \phi_{K} + \pi/2)$ $I(\mathbf{Q}) = |F_{J}(\mathbf{Q})|^{2} + |F_{K}(\mathbf{Q})|^{2} + 2|F_{J}(\mathbf{Q})||F_{K}(\mathbf{Q})|\sin(\phi_{J} - \phi_{K})$

 $\sin(\phi_J - \phi_K)$ - is odd function!

Friedel pairs: Q and -Q

$$F(\boldsymbol{Q}) = \sum_{i} f_{i}(\boldsymbol{Q}) \exp(i\boldsymbol{Q}(\boldsymbol{r}_{i}))$$

$$F(\boldsymbol{Q}) = |F(\boldsymbol{Q})| \exp(i\phi)$$

Friedel pairs: Q and -Q

The European Synchrotron | ESRF

 $I(\boldsymbol{Q}) = |F(\boldsymbol{Q})|^{2} = |F_{A}(\boldsymbol{Q})|^{2} + |F_{S}(\boldsymbol{Q})|^{2} + 2|F_{A}(\boldsymbol{Q})||F_{S}(\boldsymbol{Q})|\cos(\phi_{A} - \phi_{S})$ $\cos(\phi_{A} - \phi_{S}) \quad \text{Cos is even function....}$

Friedel law: close to resonance

$I(\boldsymbol{Q}) = |F(\boldsymbol{Q})|^{2} = |F_{J}(\boldsymbol{Q}) + iF_{K}(\boldsymbol{Q})|^{2}$ $I(\boldsymbol{Q}) = |F_{J}(\boldsymbol{Q})|^{2} + |F_{K}(\boldsymbol{Q})|^{2} + 2|F_{J}(\boldsymbol{Q})||F_{K}(\boldsymbol{Q})|\sin(\phi_{J} - \phi_{K})$

 $I(\boldsymbol{Q}) - I(-\boldsymbol{Q}) = 4|F_J(\boldsymbol{Q})||F_K(\boldsymbol{Q})|\sin(\phi_J - \phi_K)$

 $\sin(\phi_J - \phi_K)$ - is odd function!

To get phase information from resonance scattering one has to be able to manipulate X-ray energy This is what synchrotron can do!

Chirality

Chirality in MnSi

Left and Right forms are related by the inversion operation

$$\begin{array}{c} (x, y, z)_L = (-x, -y, -z)_R \\ \phi_L = -\phi_R \\ \hline X (Mn) & X (Si) \end{array}$$

0.137	0.846 L
0.887	0.154 R

 $I(\mathbf{Q}) - I(-\mathbf{Q}) = \pm 2|F_J(\mathbf{Q})||F_K(\mathbf{Q})|\sin(\phi_J - \phi_K)$

$$\sin(\phi_J - \phi_K)$$
 - is odd function!

Opposite enantiomeric forms give an interference contribution of he different sign. They are distinguishable due to the resonant contribution.

Absolute structure determination

- 1. Resonance contribution $f(\vec{Q}) = f_0(\vec{Q}) + f'(\lambda) + if''(\lambda)$
- 2. Violation of Friedel law $|F(\vec{Q})| \neq |F(-\vec{Q})|$ $I(\vec{Q}) - I(-\vec{Q}) \neq 0$
- 3. Flack parameter

ESRF

The European Synchrotron

H. D. Flack and G. Bernardinelli (2008). Chirality 20, 681

Parsons' quotients

Observed:
$$q_{\rm obs}(\mathbf{h}) = \frac{I_{\rm obs}(\mathbf{h}) - I_{\rm obs}(\bar{\mathbf{h}})}{I_{\rm obs}(\mathbf{h}) + I_{\rm obs}(\bar{\mathbf{h}})}$$

Calculated:
$$q_{\text{calc}}(\mathbf{h}) = \frac{I_{\text{calc}}(\mathbf{h}) - I_{\text{calc}}(\bar{\mathbf{h}})}{I_{\text{calc}}(\mathbf{h}) + I_{\text{calc}}(\bar{\mathbf{h}})}$$

Structural chirality:
$$\Gamma = 1 - 2x_F = \frac{q_{\text{obs}}}{q_{\text{calc}}}$$

S. Parsons et al., Acta Cryst. (2013). B69, 249–259

Absolute structure determination

$$\frac{I(H) - I(-H)}{I(H) + I(-H)} = \gamma_c \frac{|F_M(H)|^2 - |F_M(-H)|^2}{|F_M(H)|^2 + |F_M(-H)|^2} \qquad \gamma_c = (1 - 2x)$$
Structural chirality – from X-ray diffraction data close to a resonance
$$\frac{I \uparrow (Q) - I \downarrow (Q)}{I \uparrow (Q) + I \downarrow (Q)} = \gamma_m (\mathbf{P}_0 \mathbf{e}_0)$$

Magnetic chirality – from scattering of polarized neutron

Chirality in MnSi at 18 keV

X (Mn)	X (Si)
0.137	0.846 L
0.887	0.154 R

Mn k-edge: 6.5390 keV Wavelength: 18 keV (0.7 Å) R_1 : 1 – 2% Flack: 0.01(1)

f'(Mn) = 0.2858, f''(Mn) = 0.6739 f'(Si) = 0.0653, f''(Si) = 0.0646

$$q_{\rm obs}(\mathbf{h}) = \frac{I_{\rm obs}(\mathbf{h}) - I_{\rm obs}(\bar{\mathbf{h}})}{I_{\rm obs}(\mathbf{h}) + I_{\rm obs}(\bar{\mathbf{h}})}$$

$$q_{\text{calc}}(\mathbf{h}) = \frac{I_{\text{calc}}(\mathbf{h}) - I_{\text{calc}}(\bar{\mathbf{h}})}{I_{\text{calc}}(\mathbf{h}) + I_{\text{calc}}(\bar{\mathbf{h}})}$$

Chirality of Cu₂OSeO₃ (Cu k-edge: 8.9789 keV)

PHYSICAL REVIEW B 89, 140409(R) (2014)

ESRF

Friedif_{stat}

H.D. Flack and U. Shmueli, Acta Cryst. (2007) A63, 257

The European Synchrotron | ESRF

Parsons' plot for MnSi

F-histogram

18 keV

F-histogram

Weighted **F**-histogram

$$\sigma^{2}(\Gamma) = \sum_{i=1}^{n} \left(\Delta I_{i} \frac{\partial \Gamma}{\partial I_{i}} \right)^{2}$$

$$+\Delta I_{\rm o}^{-} \left[-\frac{(I_{\rm c}^{+} + I_{\rm c}^{-})(I_{\rm o}^{+} - I_{\rm o}^{-})}{(I_{\rm c}^{+} - I_{\rm c}^{-})(I_{\rm o}^{+} + I_{\rm o}^{-})^{2}} - \frac{I_{\rm c}^{+} + I_{\rm c}^{-}}{(I_{\rm c}^{+} - I_{\rm c}^{-})(I_{\rm o}^{+} + I_{\rm o}^{-})^{2}} \right]^{2}$$

Weighted **F**-histogram

Weighted **F**-histogram

- Determination of absolute structure using the Flack parameter and Parsons quotients for low energy xrays is a routine procedure.
- Determination of absolute structure far from the resonant scattering is also possible if we apply statistical methods to the quotients distribution.

Bleeding edge

Received 17 December 2015 Accepted 19 February 2016

Absolute structure determination using CRYSTALS

Richard Ian Cooper,^a* David John Watkin^a and Howard D. Flack^b

