

Magnetic small-angle neutron scattering of nanostructured ferromagnets

Dirk Honecker, Institut Laue-Langevin

PNPI School on Condensed State Physics, 15/03/2016

HL

Outline

Small–Angle Neutron Scattering (SANS)

a technique to study the microstructure at nanometer scales Micromagnetics

Theory for magnetic SANS of multiphase bulk ferromagnets Experimental Results on nanostructured ferromagnets

Nanocrystalline magnetic alloys

Co nanowire array

Summary and conclusion

Small–Angle Neutron Scattering (SANS) diffractometer

3 SANS instruments (D11, D22, D33) at ILL

SANS probes bulk material on nanometer length scale (1-500 nm)

H

Science cases on D33

Soft condensed matter

% experiments Colloids, polymers, gels, liquid crystals, self assembly of molecules 3% 42% 48% Biology 1% proteins, membranes vectors for drug delivery

Material Science

phase separation in alloys and glasses, microporosity

Magnetism and Microstructure Flux line lattices in superconductors Chiral magnetic phases (cf. evening session) Magnetic nanoparticles, e.g. ferrofluids Magnetic correlations in bulk ferromagnets

Sample environments

- Pressure cells
- Oven
- Rheometer
- Cryostats + Dilution refrigerators
- Magnets (up to 17T)

D33: Schematic drawing

Scattered intensity

-Covered *q*-range given by sample-detector distance *L*, detector size *d* & wavelength λ -Smearing of features due to polydispersity and *q* resolution

$$\Delta q^2 \approx q^2 \left(\frac{\Delta\lambda}{\lambda}\right)^2 + \left(\frac{4\pi}{\lambda}\right)^2 \Delta\psi^2$$

unpolarised small-angle scattering cross section $(\mathbf{k}_0 \perp \mathbf{H}) \rightarrow \mathbf{q} = (0, q_y, q_z)$

 $\frac{d\Sigma}{d\Omega}(\mathbf{q}) \propto |\widetilde{N}|^2 + |\widetilde{M}_z|^2 \sin^2\theta + |\widetilde{M}_x|^2 + |\widetilde{M}_y|^2 \cos^2\theta - 2\widetilde{M}_y \widetilde{M}_z \sin\theta \cos\theta$

mixture of nuclear and magnetic scattering

Magnetic small-angle neutron scattering

Dilute magnetic particles in nonmagnetic matrix (e.g. ferrofluids, magnetic precipitate)

$$\frac{d\Sigma_{\text{mag}}}{d\Omega}(q,H) = \frac{N}{V} V_p^2 |F(\mathbf{q})|^2 [(\Delta \rho_M)^2 \langle \sin^2 \alpha \rangle]$$

Production process of nanocrystalline magnetic alloys

rapid solidification

G. Herzer, Acta Materialia 61, 718 (2013)

bright-field TEM of NANOPERM alloy C.F. Conde, Acta Mater. 55, 5675 (2007)

Magnetic SANS at high magnetic field

Material: $(Fe_{0.985}Co_{0.015})_{90}Zr_7B_3$; particle size $D = 15\pm 2$ nm; particle volume $\eta \approx 65$ %

$$\frac{d\Sigma}{d\Omega}(\mathbf{q}) \propto |\widetilde{N}|^2 + |\widetilde{M}_z|^2 \sin^2 \theta$$

SLD profile from particle-core model

• size of diffusion zone ~ 1 nm

H[]

Magnetic microstructure of nanocrystalline ferromagnet

- 3D bulk material with crystallite size $D \sim 10 20$ nm
- two ferromagnetic phases (exchange coupled)
- random orientation of crystallographic axes
- high volume fraction of internal interfaces
- jump in M_s at interfaces

Magnetic microstructure is highly inhomogeneous

- spin disordered on nm-scale
- crossing length scales scenario
- important for coercivity, remanence, ...
- (field dependent) spin-misalignment SANS

T. Schrefl *et al*., PRB <u>49</u>, 6100 (1994).

Spin-Misalignment Scattering of NANOPERM

Material: $Fe_{89}Zr_7B_3Cu_1$; particle size $D = 12\pm 2$ nm; particle volume $\eta \approx 40$ %

Clover-leaf anisotropy

magnetic nanocomposites (e.g. NANOPERM)

Sources of spin disorder: Spatial variation of

- magnetic anisotropy field $\mathbf{H}_{\mathcal{K}}(\mathbf{r})$
- saturation magnetisation $M_s(\mathbf{r})$

How do theses perturbations affect $\widetilde{M}_{x,y,z}(\mathbf{q}, H, A, D, ...)$ and $\frac{d\Sigma}{d\Omega}(\mathbf{q})$?

Micromagnetics

numerical simulation

S. Erokhin, Phys. Rev. B 85, 024410 (2012)

analytical description

H. Kronmüller, Z. Physik 168, 478 (1962)

Micromagnetism

balance of torques (Brown, 1963)

$$[\mathbf{H} + \mathbf{H}_D(\mathbf{r}) + \mathbf{H}_K(\mathbf{r}) + \frac{2A}{\mu_0 M_s^2} \nabla^2 \mathbf{M}(\mathbf{r})] \times \mathbf{M}(\mathbf{r}) = 0$$

 $M_{x,y}(\mathbf{r}) \ll M_z(\mathbf{r})$ Compare e.g.: E. Schlömann, J. Appl. Phys. 38, 5027 (1967) H. Kronmüller and J. Ulner, J. Magn. Magn. Mater. 6, 52 (1977)

linearised solution in the approach to saturation

Comparison to experiment: NANOPERM (2D data)

Material: $Fe_{89}Zr_7B_3Cu_1$; particle size $D = 12\pm 2$ nm; particle volume $\eta \approx 40$ %

high *H*: dominated by ΔM

low *H*: dominated by H_{K}

 $\frac{d\Sigma_{\text{mag}}}{d\Omega}(q,\theta,H) \propto H_K^2 R_K(q,\theta,H) + \Delta M^2 R_M(q,\theta,H)$

Field-dependent SANS of NANOPERM

$$\langle |\mathbf{H}_K|^2 \rangle = \frac{1}{2\pi^2 b_H^2} \int_0^\infty H_K^2(q) \, q^2 \, dq$$

magnetisation magnitude fluctuations $\langle |M_z|^2\rangle^{1/2} \geq 50\,{\rm mT}$

Correlation function of spin-misalignment scattering

HL

Correlation function of spin-misalignment scattering

normalised correlation function

field-dependence of decay length l_c

- magnetic anisotropy scattering exhibits long-range fluctuations
- scattering due to ΔM is short-range and persistent over wide field range

• ratio H_{κ} / ΔM determines $l_{C}(H)$

• $l_C(H)$ approaches 4 nm for H > 1

Hard magnets: Nd-Fe-B nanocomposite

Material: nominal composition Nd₅Fe₇₄Cr₃B₁₈

- Nd₂Fe₁₄B particle size D = 22 nm; particle volume $\eta \approx 45$ %
- Fe₃B, soft magnetic, grain size D = 29 nm J.-P. Bick et al., APL 102, 022415 (2013)

Magnetization reversal in Nd-Fe-B nanocomposites

Material: Hard magnetic nanocomposite (Nd₅Fe₇₄Cr₃B₁₈) J.-P. Bick et al., APL 102, 022415 (2013)

- Nd₂Fe₁₄B particle size D = 22 nm; particle volume $\eta \approx 45$ %
- Fe₃B, soft magnetic, grain size D = 29 nm

What is the spin-misalignment length during magnetization reversal?

Magnetization reversal in Nd-Fe-B nanocomposites

Only perturbations due to magnetic anisotropy

$$|\widetilde{M}_z(\mathbf{q})| \propto \Delta M_s = 0.01 \,\mathrm{T}$$

10 0 15 $\mu_0 H$ (T) $\frac{2A}{\mu_0 M_s (H+H^*)}$ $l_C(H) = L + l_H(H) = L +$

KWS 1

Quokka

Η

• exchange stiffness constant A = 12 pJ/m

Co nanowire array: saturated state

Pulsed electrodeposition of Co in nanoporous Al₂O₃ (*d* ~ 27 nm, *d*_{CC} ~ 48 nm, *l* ~ 480 nm) (10)12 10 (30) $|\tilde{N}|$ $\ln(d\Sigma/d\Omega)$ [cm⁻¹ sr⁻¹ 8 (11),(20)-2 (a) $\mu_0 H = 2 \text{ T}$ 0.1 0.02 $q \,[\mathrm{nm}^{-1}]$ $|\tilde{N}|^2$ $|\tilde{M}_z|^2$ $\frac{d\Sigma_{\text{sat}}}{d\Omega} = |N(\mathbf{q})|^2 + |M_z(\mathbf{q})|^2 \sin^2 \theta$ R [nm] 15.8 ± 0.1 14.6 ± 0.3 49.6 ± 0.1 50.0 ± 0.2 d_{cc} [nm]

Cross section for oriented and densely packed cylinders: $I(q) = A|2J_1(qR)/(qR)|^2 \times (\sum_i a_i \exp[-(q-q_i)^2/2\sigma_i^2])$ Form factor Structur factor of hexagonal order

Co nanowire array: field dependence

Pulsed electrodeposition of Co in nanoporous Al_2O_3 ($d \sim 27$ nm, $d_{CC} \sim 48$ nm, $L \sim 480$ nm)

Summary and conclusions

- SANS probes for characteristic structural and magnetic lengths on nanometer scale
- Micromagnetic theory is a tool for the quantitative analysis of magnetic SANS
 - reproduces observed scattering anisotropy
 - H_{K} / ΔM determines scattering
 - approach provides quantitative information on magnetic parameters (A, H_{K} , ΔM)
- Dipolar interactions must be taken into account
 - Challenge remain for dense nanomagnets in nonmagnetic matrix

Acknowledgement

University of Luxembourg

Jens-Peter Bick, Frank Döbrich, Annegret Günther, Elio Perigo, Philipp Szary and Andreas Michels

Sample preparation

Cristina Gómez-Polo, Universidad Pública de Navarra

- Kiyonori Suzuki, Monash University
- Instrument responsibles

Charles D. Dewhurst and Albrecht Wiedenmann, Institute Laue-Langevin Artem Feoktystov, Henrich Frielinghaus and André Heinemann, FRM II Joachim Kohlbrecher, Jorge Gavilano, Paul-Scherrer Institut Elliot P. Gilbert, Bragg Institute - ANSTO

Thank you very much for your attention

D33: Modes of Operation

- Monochromatic mode with velocity selector ($d\lambda/\lambda \sim 10\%$)
- TOF mode using choppers

Covered q-range (probed length scales) given by sample-detector distance & wavelength -TOF: wide simultaneous q range, tunable $d\lambda/\lambda$, but low transmission of chopper system -Monochromatic: smaller dynamic q range, need for several detector distances, higher flux

Scattering length density

Neutrons

distinguish between different elements and isotopes (e.g. H₂O vs D₂O): labelling/contrast variation
possess a spin: sensitive to magnetic structure

comparable strength of nuclear and magnetic SLD

Magnetic SLD of Co $\rho_{mag} = b_H M_{s,Co} = 4.06$

 $\mu_0 M_{s,Co} = 1400 \text{ kA/m}$ $b_H = 2.9 \times 10^8 \text{ A}^{-1} \text{ m}^{-1}$

Spin-misalignment scattering **Material**: $Fe_{89}Zr_7B_3Cu_1$; particle volume $\eta \approx 40$ %; particle size $D = 12\pm 2$ nm

$\frac{d\Sigma}{d\Omega}(\mathbf{q}) \propto |\widetilde{N}|^2 + |\widetilde{M}_z|^2 \sin^2 \theta + |\widetilde{M}_x|^2 + |\widetilde{M}_y|^2 \cos^2 \theta - 2\widetilde{M}_y \widetilde{M}_z \sin \theta \cos \theta$

difference

Field dependence of spin-misalignment scattering $\frac{d\Sigma_{\text{mag}}}{d\Omega}(q,\theta,H) \propto H_K^2 R_K(q,\theta,H) + \Delta M^2 R_M(q,\theta,H)$

high *H*: dominated by ΔM

two phases $H_{K} = \Delta M$

single phase

 $\Delta M = 0$

Dipolar stray fields due to ΔM in heterogeneous ferromagnets give rise to clover-leaf anisotropy

Crossover from H_K to ΔM dominated scattering

 $\frac{d\Sigma_{\text{mag}}}{d\Omega}(q,\theta,H) \propto H_K^2 R_K(q,\theta,H) + \Delta M^2 R_M(q,\theta,H)$

Magnetic SANS of bulk ferromagnets

 $\frac{d\Sigma_{\text{mag}}}{d\Omega}(q,H) \propto H_K^2 R_K(q,H) + \Delta M^2 R_M(q,H)$

Magnetic SANS of bulk ferromagnets

Comparison to experiment: NANOPERM

Single phase material

Material: electrodeposited, nanocrystalline Co; grain size $D = 10\pm3$ nm

strong spin-misalignment scattering even at highest field data analysis done using micromagnetic theory

Single phase material

Material: electrodeposited, nanocrystalline Co; grain size $D = 10\pm3$ nm

- strongly field dependent magnetic scattering
- exchange stiffness constant A = 28±1 pJ/m
- internal interfaces have no impact on exchange coupling

Nanocrystalline soft magnetic alloys

Magnetic properties

2.5 -

- high saturation magnetisation ($\mu_0 M_s = 1.2 1.8 \text{ T}$)
- high initial permeability ($\mu_i = 10^3 10^5$)
- low coercivity (H_c =1-50 A/m)

Halpern & Johnson (1939), Maleyev (1959), Blume (1963), Moon, Riste, Koehler (1969), ...

 strongly field-dependent spin-misalignment scattering (dilute, non-interacting particle approach not appropriate)

Example: SF cross section of Fe-Cr-based nanocomposite

Results on a two-phase Fe-Cr-based melt-spun nanocomposite

- Fe_{63.5}Cr₁₀Si_{13.5}B₉Cu₁Nb₃
- FeSi-particle size D = 10-15 nm
- particle volume η ≈ 30 %
 C. Gómez-Polo et al., J. Magn. Magn. Mater. 316, e876 (2007)

reducing field strength

- presence of transversal magnetisation components
- spin-misalignment scattering

$$\frac{d\Sigma^{\pm\pm}}{d\Omega}(\mathbf{q}) \propto |\widetilde{N}|^2 + |\widetilde{M}_z|^2 \sin^4 \theta \mp (\widetilde{N}\widetilde{M}_z^* + \widetilde{N}^*\widetilde{M}_z) \sin^2 \theta \\ + |\widetilde{M}_y|^2 \sin^2 \theta \cos^2 \theta - (\widetilde{M}_y\widetilde{M}_z^* + \widetilde{M}_z\widetilde{M}_y^*) \sin^3 \theta \cos \theta \\ \pm (\widetilde{N}\widetilde{M}_y^* + \widetilde{N}^*\widetilde{M}_y) \sin \theta \cos \theta$$

Correlation function of the spin-misalignment: theory

