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• Symmetries of disordered systems
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• Influence of electron-electron interaction



Anderson localization

Philip W. Anderson

1958 “Absence of diffusion
in certain random lattices”

sufficiently strong disorder −→ quantum localization

−→ eigenstates exponentially localized, no diffusion

−→ Anderson insulator

Nobel Prize 1977



Anderson Localization: Extended and localized wave functions

Schrödinger equation

in a random potential

[−~2 ∆

2m
+ U(r)]ψ = Eψ

U

E

x

Ψ

x

delocalized
Ψ

x

localized

|ψ|2 ∼ exp{−|r − r0|/ξ}



Precursor of strong Anderson localization: Weak localization
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Weak localization in experiment: Magnetoresistance

Li et al. (Savchenko group), PRL’03

2D electron gas
in GaAs heterostructure

low field: weak localization
Gorbachev et al. (Savchenko group),
PRL’07

weak localization in bilayer graphene



Weak localization in experiment: Magnetoresistance (cont’d)

Lin, Giordano, PRL’86

Au-Pd wires; weak antilocalization
due to strong spin-orbit scattering

White, Dynes, Garno PRB’84

Mg films; weak antilocalization
at lowest fields;
weak localization at stronger fields



Altshuler-Aronov-Spivak effect: Φ0/2 AB oscillations

Arkady Aronov (1939-1994)

experimental observation:
Sharvin, Sharvin ’81

review: Aronov, Sharvin,
Rev. Mod. Phys.’87



Anderson Insulators & Metals
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Connection with scaling theory of critical
phenomena: Thouless ’74; Wegner ’76

Scaling theory of localization:
Abrahams, Anderson, Licciardello,
Ramakrishnan ’79

scaling variable:
dimensionless conductance g = G/(e2/h)

RG for field theory (σ-model)
Wegner ’79

quasi-1D, 2D :
all states are localized

d > 2: Anderson metal-insulator transition
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review: Evers, ADM, Rev. Mod. Phys. 80, 1355 (2008)



Field theory: non-linear σ-model

action:

S[Q] =
πν

4

∫
ddr Tr [−D(∇Q)2 − 2iωΛQ], Q2(r) = 1

Wegner’79

σ-model manifold:

e.g., “unitary” symmetry class (broken time-reversal symmetry):

• fermionic replicas: U(2n)/U(n)×U(n) , n→ 0 “sphere”

• bosonic replicas: U(n, n)/U(n)×U(n) , n→ 0 “hyperboloid”

• supersymmetry (Efetov’83): U(1, 1|2)/U(1|1)×U(1|1)

{“sphere” × “hyperboloid”} “dressed” by anticommuting variables

• with electron-electron interaction: Finkelstein’83



σ model: Perturbative treatment

For comparison, consider ferromagnet model in external magnetic field:

H[S] =

∫
ddr

[
κ

2
(∇S(r))2 − BS(r)

]
, S2(r) = 1

n-component vector σ-model

Target manifold:

sphere Sn−1 = O(n)/O(n− 1)

Independent degrees of freedom: transverse part S⊥ ; S1 = (1− S2
⊥)1/2

H[S⊥] =
1

2

∫
ddr

[
κ[∇S⊥(r)]2 +BS2

⊥(r) + O(S4
⊥(r))

]
Ferromagnetic phase: broken symmetry,

Goldstone modes – spin waves
〈S⊥S⊥〉q ∝

1

κq2 +B

Similarly

S[Q] =
πν

4

∫
ddr Str[D(∇Q⊥)2 − iωQ2

⊥ + O(Q3
⊥)]

theory of “interacting” diffusion modes;

Goldstone mode: diffusion propagator
〈Q⊥Q⊥〉q,ω ∼

1

πν(Dq2 − iω)



Quasi-1D geometry: Exact solution of the σ-model

quasi-1D geometry (many-channel wire) −→ 1D σ-model

−→ diffusion on σ-model curved space ∂tW = ∆QW , t = x/ξ

• Localization length Efetov, Larkin ’83

• Exact solution for the statistics of eigenfunctions Fyodorov, ADM ’92-94

• Exact 〈g〉(L/ξ) and var(g)(L/ξ) Zirnbauer, ADM, Müller-Groeling ’92-94
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From weak to strong localization of electrons in wires

GaAs wires

Gershenson et al, PRL 97



Anderson localization of atomic Bose-Einstein condensate in 1D

Billy et al (Aspect group), Nature 2008



3D Anderson localization transition in Si:P

Stupp et al, PRL’93; Wafenschmidt et al, PRL’97
(von Löhneysen group)



3D Anderson localization in atomic “kicked rotor”

kicked rotor H =
p2

2
+K cosx[1 + ε cosω2t cosω3t]

∑
n

δ(t− 2πn/ω1)

Anderson localization in momentum space. Three frequencies mimic 3D !

Experimental realization: cesium atoms exposed to a pulsed laser beam.

Chabé et al, PRL’08



Multifractality at the Anderson transition

Pq =
∫
ddr|ψ(r)|2q inverse participation ratio

〈Pq〉 ∼


L0 insulator

L−τq critical

L−d(q−1) metal

τq = d(q − 1) + ∆q ≡ Dq(q − 1) multifractality

normal anomalous

d α
0

α

d

0

f(
α

)

metallic

critical

α−
α+

|ψ|
2
 large |ψ|

2
 small

τq −→ Legendre transformation

−→ singularity spectrum f(α)

wave function statistics:

P(ln |ψ2|) ∼ L−d+f(ln |ψ2|/ lnL)

Lf(α) – measure of the set of points where |ψ|2 ∼ L−α



Dimensionality dependence of multifractality
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Inset: d = 3 (dashed)
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Mildenberger, Evers, ADM ’02



Multifractality at the Quantum Hall transition

Evers, Mildenberger, ADM ’01
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Power-law random banded matrix model (PRBM)

ADM, Fyodorov, Dittes, Quezada, Seligman ’96

N ×N random matrix H = H† 〈|Hij|2〉 =
1

1 + |i− j|2/b2

←→ 1D model with 1/r long range hopping

0 < b <∞ parameter

Critical for any b −→ family of critical theories!

b� 1 analogous to d = 2 + ε b� 1 analogous to d� 1

Analytics: b� 1: σ-model RG

b� 1: real space RG

Numerics: efficient in a broad range of b
Evers, ADM ’01



Multifractality in PRBM model: analytics vs numerics
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Symmetry of multifractal spectra

ADM, Fyodorov, Mildenberger, Evers ’06

LDOS distribution in σ-model + universality

−→ exact symmetry of the multifractal spectrum:

∆q = ∆1−q f(2d− α) = f(α) + d− α
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Multifractality: Generalizations

• Symmetry of multifractal spectra as a consequence of invariance
of the σ model correlation functions with respect to Weyl group of
the σ model target space;

generalization to unconventional symmetry classes

Gruzberg, Ludwig, ADM, Zirnbauer PRL’11

• generalization on full set of composite operators,

i.e. also on subleading ones.

Gruzberg, ADM, Zirnbauer, PRB’13

Important example:

A2 = V 2|ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)|2

←→ Hartree-Fock matrix element of e-e interaction

scaling: 〈Aq2〉 ∝ L
−∆

(2)
q symmetry: ∆

(2)
q = ∆

(2)
2−q



Interaction scaling at criticality

Hartree, Fock

enhanced by multifractality

exponent ∆2 ' −0.52 < 0

Hartree – Fock

suppressed by multifractality

exponent ∆
(2)
1 ' 0.62 > 0

Burmistrov, Bera, Evers, Gornyi, ADM, Annals Phys. 326, 1457 (2011)

−→ Temperature scaling at quantum Hall and metal-insulator
transitions with short-range interaction



Multifractal spectrum of A2 at quantum Hall transition

Numerical data: Bera, Evers, unpublished

Confirms the symmetry q ←→ 2− q



Multifractality: Experiment I

Local DOS flucutuations

near metal-insulator transition

in Ga1−xMnxAs

Richardella,...,Yazdani, Science ’10



Multifractality: Experiment II

Ultrasound speckle in a system

of randomly packed Al beads

Faez, Strybulevich, Page,
Lagendijk, van Tiggelen, PRL’09



Multifractality:

Experiment III

Localization of light

in an array of dielectric

nano-needles

Mascheck et al,
Nature Photonics ’12



Disordered electronic systems: Symmetry classification

Altland, Zirnbauer ’97

Conventional (Wigner-Dyson) classes
T spin rot. symbol

GOE + + AI
GUE − +/− A
GSE + − AII

Chiral classes

T spin rot. symbol

ChOE + + BDI
ChUE − +/− AIII
ChSE + − CII

H =

(
0 t
t† 0

)

Bogoliubov-de Gennes classes

T spin rot. symbol

+ + CI
− + C
+ − DIII
− − D

H =

(
h ∆

−∆∗ −hT

)



Disordered electronic systems: Symmetry classification

←→ classification of symmetric spaces Zirnbauer’96, Altland, Zirnbauer’97

Ham. RMT T S compact non-compact σ-model σ-model compact
class symmetric space symmetric space B|F sector MF

Wigner-Dyson classes

A GUE − ± U(N) GL(N,C)/U(N) AIII|AIII U(2n)/U(n)×U(n)

AI GOE + + U(N)/O(N) GL(N,R)/O(N) BDI|CII Sp(4n)/Sp(2n)×Sp(2n)

AII GSE + − U(2N)/Sp(2N) U∗(2N)/Sp(2N) CII|BDI O(2n)/O(n)×O(n)

chiral classes

AIII chGUE − ± U(p+ q)/U(p)×U(q) U(p, q)/U(p)×U(q) A|A U(n)

BDI chGOE + + SO(p+ q)/SO(p)×SO(q) SO(p, q)/SO(p)×SO(q) AI|AII U(2n)/Sp(2n)

CII chGSE + − Sp(2p+ 2q)/Sp(2p)×Sp(2q) Sp(2p, 2q)/Sp(2p)×Sp(2q) AII|AI U(n)/O(n)

Bogoliubov - de Gennes classes

C − + Sp(2N) Sp(2N,C)/Sp(2N) DIII|CI Sp(2n)/U(n)

CI + + Sp(2N)/U(N) Sp(2N,R)/U(N) D|C Sp(2n)

BD − − SO(N) SO(N,C)/SO(N) CI|DIII O(2n)/U(n)

DIII + − SO(2N)/U(N) SO∗(2N)/U(N) C|D O(n)

Universality classes: Spatial dimenionality, symmetry, topology



Role of symmetry: 2D systems of Wigner-Dyson classes

Orthogonal and Unitary: localization;
parametrically different localization length: ξU� ξO

Symplectic: metal-insulator transition

Usual realization of Sp class: spin-orbit interaction



Anderson localization & topology: Integer Quantum Hall Effect

von Klitzing ’80 ; Nobel Prize ’85 IQHE flow diagram

Khmelnitskii’ 83, Pruisken’ 84

localized
��
��
��
��

��
��
��
��

localized
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critical

Field theory (Pruisken):

σ-model with topological term

S =

∫
d2r

{
−
σxx

8
Tr(∂µQ)2 +

σxy

8
TrεµνQ∂µQ∂νQ

}
QH insulators −→ n = . . . ,−2,−1, 0, 1, 2, . . . protected edge states

−→ Z topological insulator



Periodic table of Topological Insulators

Symmetry classes Topological insulators

p Hp Rp Sp π0(Rp) d=1 d=2 d=3 d=4

0 AI BDI CII Z 0 0 0 Z
1 BDI BD AII Z2 Z 0 0 0
2 BD DIII DIII Z2 Z2 Z 0 0
3 DIII AII BD 0 Z2 Z2 Z 0
4 AII CII BDI Z 0 Z2 Z2 Z
5 CII C AI 0 Z 0 Z2 Z2
6 C CI CI 0 0 Z 0 Z2
7 CI AI C 0 0 0 Z 0

0′ A AIII AIII Z 0 Z 0 Z
1′ AIII A A 0 Z 0 Z 0

Hp – symmetry class of Hamiltonians

Rp – sym. class of classifying space (of Hamiltonians with eigenvalues → ±1)

Sp – symmetry class of compact sector of σ-model manifold

Kitaev’09; Schnyder, Ryu, Furusaki, Ludwig’09; Ostrovsky, Gornyi, ADM’10



2D massless Dirac fermions

Graphene

Geim, Novoselov’04

Nobel Prize’10

Surface of 3D topological insulators

BiSb, BiSe, BiTe Hasan group ’08

σ-model field theory with a topological term

Ostrovsky, Gornyi, ADM ’07

• Graphene: long-range disorder (no valley mixing)

• Surface states of 3D TI: no restriction on disorder range



Role of symmetry and topology: Graphene at the Dirac point

Ostrovsky et al, PRL’10; Gattenlöhner et al, PRL’14

Models of scatterers:

• scalar impurity: smooth on atomic scale (no valley mixing)

• resonant scalar impurity: diverging scattering length, quasi-
bound state at the Dirac point

• adatom: on-site potential (valley mixing)

• vacancy: infinitely strong on-site potential



Resonant scalar impurities (ls =∞)

Ostrovsky, Titov, Bera, Gornyi, ADM, PRL (2010)
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• flow towards supermetal σ →∞
• agreement with σ model RG



Scalar impurities (finite ls, random sign)

Large ls −→ Symmetry breaking pattern:

DIII (with WZ term) −→ AII (with Z2 θ-term)



Vacancies
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Adatoms (finite la, random sign)

Large la −→ Symmetry breaking pattern: BDI −→ AI

Vacancies (la→∞): finite conductivity σ ' 4
π
e2

h for L→∞

Localization length ξ – non-monotonous function of la



Scalar impurities in magnetic field B

Symmetry breaking pattern: DIII → AII → A for weaker B

and DIII → AIII → A for stronger B

Ultimate fixed points: Quantum Hall criticality (random sign

of impurity potentials) and localization (fixed sign)



Scalar impurities in magnetic field B

Ultimate fixed points: Quantum Hall criticality (random sign

of impurity potentials) and localization (fixed sign)

Vertical bars: mesoscopic fluctuations



Graphene: Experiments Geim-Novoselov and Kim groups

Topological terms explain unconventional properties
of high-quality graphene samples:

• absence of localization at Dirac point down to very low temper-
atures (30 mK), although conductivity ' e2/h per spin per valley

• anomalous QHE: σxy = (2n+ 1)× 2e2/h;

QHE transition at n = 0 (Dirac point), i.e. at σxy = 0



Electron-electron interaction effects

• Renormalization

Virtual processes, energy transfer & T ,

become stronger when T is lowered

• mutual renormalisation of resistivity and interaction,

• zero-T phase diagram and quantum phase transitions

• effect of disorder on superconducting and magnetic instabilities

• Dephasing

Real inelastic scattering processes, energy transfer . T ,

become weaker when T is lowered

• dephasing of quantum interference

• decay of single-particle excitations

• finite-T broadening of localization quantum phase transitions

• finite-T many-body (de-)localization



Interacting non-linear sigma model (NLσM)

S =−
g

32

∫
drTr(∇Q)2 + 4πTZω

∫
drTr ηQ

−
πT

4
Γs
∑
α,n

∑
r=0,3

∫
drTr

[
Iαn tr0Q

]
Tr
[
Iα−ntr0Q

]

−
πT

4
Γt
∑
α,n

∑
r=0,3

3∑
j=1

∫
drTr

[
Iαn trQ

]
Tr
[
Iα−ntrQ

]
−
πT

2
Γc
∑
α,n

∑
r=0,3

(−1)r
∫
drTr

[
Iαn tr0QI

α
n tr0Q

]
g – conductivity (in e2/h) Zω – frequency renormalization

Γs , Γt, Γc – singlet, triplet, and Cooper interaction amplitudes

Q(r) = T−1(r)ΛT (r) – matrix in replica, Matsubara, spin, and p-h

Λαβ
nm = sgnn δnmδ

αβt00 ηαβnm = n δnmδ
αβt00 (Iγk )αβnm = δn−m,kδ

αβδαγt00

α, β – replica indices ; n,m – Matsubara indices

trj = τr ⊗ sj – Pauli matrices in particle-hole and spin spaces



Renormalization group for interacting NLσM in 2D

dt

dy
= t2

[
1 + f(γs) + 3f(γt)− γc

]
dγs

dy
= −

t

2
(1 + γs)

(
γs + 3γt + 2γc + 4γ2

c

)
dγt

dy
= −

t

2
(1 + γt)

[
γs − γt − 2γc

(
1 + 2γt − 2γc

)]
dγc

dy
= −2γ2

c −
t

2

[
(1 + γc)(γs − 3γt)− 2γ2

c + 4γ3
c

+ 6γc

(
γt − ln(1 + γt)

)]
d lnZω

dy
=
t

2

(
γs + 3γt + 2γc + 4γ2

c

)
y = ln(L/l) – running RG scale f(x) = 1− (1 + 1/x) ln(1 + x)

γi = Γi/Zω t = 2/πg – dimensionless resistance

Burmistrov, Gornyi, ADM, PRL’12, PRB’15



2D phase diagrams
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T dependence of resistivity across SIT: Coulomb interaction
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experiment: Bi and Pb films
Haviland, Liu, Goldman, PRL’89

exper.: TiN films
Baturina et al, PRL’07

suppression of superconductivity by localization + Coulomb int.



T dependence of resistivity across SIT: Short-range interaction
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enhancement of superconductivity
by localization !

can be traced back to
multifractality −→ renormalisation
towards stronger interaction

Experimental verification ?

Caviglia et al, Nature’08 LaAlO3/SrTiO3 interface

Taguchi et al, PRL’06

LixZrNCl



Multifractality and tunneling DOS
in systems with Coulomb interaction

Burmistrov, Gornyi, ADM, PRL 111, 066601 (2013);

PRB 89, 035430 (2014)

PRB 91, 085427 (2015)

• Does multifractality survive in the presence of

1/r Coulomb interaction?

• If yes, in what physical observables does it show up?

• What are multifractal exponents in the presence of

Coulomb interaction?



TDOS in systems with Coulomb interaction: Experiments

average TDOS, Si:B

Lee et al, PRB ’99

TDOS fluctuations, Ga1−xMnxAs

Richardella et al, Science ’10



Multifractal correlations of local TDOS
at Anderson transition with Coulomb interaction

〈[ρ(E, r)− 〈ρ(E)〉][ρ(E, r +R)− 〈ρ(E)〉]〉/〈〈ρ2(E)〉〉
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Figure 1 | Coherent versus incoherent Cooper pairing revealed by local tunnelling spectroscopy. a–d, T-evolutions of the local tunnelling conductance G
characterized by the presence (a,c) or absence (b,d) of superconducting coherent peaks. Both sets of data were measured, at a fixed location, in a
low-disorder sample (a,c) and in a high-disorder sample (b,d). The black dashed lines show the spectra measured at Tc. a,b, Set of spectra for selected
temperatures equal to a fraction of the low-T spectral gap. The spectral gap values are �= 560 µeV and �= 500 µeV for a and b respectively (see the
Methods section). c,d, Three-dimensional view of the same data versus temperature and bias voltage.

with half flux-quantum periodicity in insulating Bi films patterned
with a honeycomb array of holes33,34. Finally, recent tunnelling
results on superconducting TiN films35 can be reinterpreted as
showing the precursor of the Cooper-pair localization. Although
these observations are in agreement with the presence of preformed
Cooper pairs at the SIT (ref. 30), they constitute only indirect
evidence for their existence.

The existence of Cooper pairs at short length scales is more
directly revealed by the observation of a superconducting gap
in the density of states10,36 (DOS) using scanning tunnelling
microscope (STM) spectroscopy37. In good BCS superconductors,
global coherence sets in at Tc. Below Tc, a DOS suppression
begins below the gap energy, �, and the lost spectral weight
appears as distinct peaks at �. These ‘coherence’ peaks are closely
linked to the emergence of a long-range superconducting state.
In the case of preformed Cooper pairs without global coherence,
it is theoretically expected16,30 that the spectrum will remain
gapped but the coherence peaks will be missing. Only when global
superconductivity sets-in, the coherence peaks re-emerge. The
height of these coherence peaks is predicted to fluctuate strongly
from one location to another.

Here, we report on a systematic spectroscopic study of the local
properties of superconductivity in highly disordered amorphous
InO films close to the SIT. Our results, obtained using an STM
mounted in a custom-made dilution refrigerator capable of a base
temperature of 50mK, provide the first direct evidence for the
existence of preformed Cooper pairs along with their localization in
the vicinity of SIT in homogeneously disordered films.

Localization of preformed Cooper pairs
The main feature of our results is the existence of two qualitatively
different T -evolutions of the DOS spectra illustrated in Fig. 1a,b.
Although the spectrawere taken from two superconducting samples
characterized by a different level of disorder, in both samples one
can find locations that exhibit these types of T -evolution of the
spectra, albeit with a different probability.

For T > Tc (Tc is indicated by the black dashed trace in the
figures), both T -evolutions exhibit very similar behaviour with a
low-energy DOS suppression that deepens as T is lowered towards
Tc. A similar DOS suppression above Tc has been seen in other
superconductors37,38, in particular in TiN (ref. 39), and has been
dubbed the pseudogap.

As T is lowered further, the two sets of spectra evolve in
a distinctly different fashion. As coherence sets in at Tc, the
spectrum of Fig. 1a develops the familiar BCS coherence peaks
at �. As T is reduced below Tc the coherence peaks increase
in size whereas the DOS at E < � is suppressed further and
seems to vanish as T ! 0. In contrast, although a full gap does
develop in the spectrum of Fig. 1b, with a similar magnitude and
a vanishing DOS at low energy, the accompanying coherence peaks
are conspicuously absent. The contrast (below Tc) and similarities
(above Tc) between the two types of spectrum are highlighted
by the corresponding plots of Fig. 1c,d, where more complete
T -evolutions of the spectra are shown.

The similarity between the T -evolution (above Tc), as well as the
gap magnitude, of both types of spectrum indicates that they share
the same physical origin. As the unique shape of the BCS tunnelling
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FIG. 2. (Color online) From left to right column: tunneling characteristics of 8-, 4-, and 2.33-nm-thick films. From top to bottom: the first

row shows normalized STS conductance maps representing the color-coded spatial variations of the dI/dV signal measured at 2.3 K at the gap

onset (for V = 1.7, 1.7, and 1.1 mV); second row: normalized individual tunneling conductance spectra representative of the spatial variations

observed among the local conductance spectra (red and blue curves) at 2.3 K; the black curves show typical spectra measured at 4.0 K in

magnetic field (B = 1, 1, and 2 T) at the vortex centers and outside the vortex (gray curves); third row: dI/dV conductance maps at V = 0

showing images of the vortex lattices at 4.0 K (for B = 1, B = 1, and 2 T); fourth row: temperature evolution of the normalized dI/dV (V )

tunneling spectra (vertically shifted for clarity); the temperature is indicated below the corresponding spectra. Red (black) curves correspond

to the SC (normal) state. The bottom thick blue lines are BCS dI/dV calculations at the indicated temperature; an additional broadening

parameter was needed to fit the data (see text).

Figure 2 summarizes STS data obtained on thinner films

(8, 4, and 2.33 nm). The data are organized in three columns

by thickness. From top to bottom, each column shows (i) a

normalized conductance map chosen to picture out possible

gap inhomogeneities, (ii) selected representative spectra,

(iii) an image of the vortex lattice, and (iv) the temperature

evolution of local spectra.

The 8-nm dI/dV map reveals only tiny spatial inhomo-

geneities of the SC gap, except in regions where structural de-

fects occur, such as the red patch in the image. The disordered
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showing images of the vortex lattices at 4.0 K (for B = 1, B = 1, and 2 T); fourth row: temperature evolution of the normalized dI/dV (V )

tunneling spectra (vertically shifted for clarity); the temperature is indicated below the corresponding spectra. Red (black) curves correspond

to the SC (normal) state. The bottom thick blue lines are BCS dI/dV calculations at the indicated temperature; an additional broadening

parameter was needed to fit the data (see text).
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FIG. 1: Main panel (a) shows the conductance distribution at
Vbias = 0.25 mV spread over an area 455 nm x 455 nm mea-
sured at zero magnetic field. The color scale represents the
normalized conductance with dark blue regions in the map
have near zero values and the red colored regions showing
conductance upto 0.75, i.e, 75 percent of the normalized con-
ductance. The representative conductance curves are shown
in the inset in panel (a). The curve displaying the clear quasi-
particle peaks is measured at dark blue regions in the main
panel (a), and the curve with monotonic decrease of conduc-
tance as the bias voltage approaches zero mV is the represen-
tative of the red regions in the map. Two intermediate curves
measured in the vicinity of these two regions are also shown
in the inset. In panel (b) the color scale represents the aver-
age of the sum of the conductance for each curve, in the bias
voltage range from -1 to +1 mV. In the inset in panel (b), the
histogram of the average of the sum of the conductance, with
128 x 128 values, is shown and their spatial map is shown in
the main panel (b).

from resistance. The crystallites range from 3 to 10 nm,
with mean size around 5 nm. This film has a supercon-
ducting transition at ⇡1 K and is marginally close to
the superconductor to insulator transition (sample D15
of Ref.[20]). Note however that the sample shows an in-
crease of the resistance with cooling, accompanied by a
slight decrease of the resistance at some hundred mK.
Scanning tunneling microscopy and spectroscopy were
carried out using a home made STM set up in a dilution
refrigerator which cools down to 100 mK. Magnetic field
was applied perpendicular to the surface of the sample.
We take full (128⇥128) conductance maps at 100 mK,
over a preselected area after normalizing the tunneling
conductance curves. We show here those particular bias
voltages where constrast in the tunneling conductance is
the highest (0.25 mV), and also give the full bias voltage
dependence in a separate figure.

The tunneling conductance behavior changes spatially
as shown in the inset in the panel Fig.1 (a). The area
under investigation is 455 nm x 455 nm and for the most

a b c

FIG. 2: In the main panel (a) the white color bar at the top
right corner is the length scale of the area 950 nm x 950 nm.
The panel (a) is the conductance map at Vbias = 0.25 mV at
H = 0 T. The color changes correspond to the conductance
values following the scale shown in the panel (c), which shows
the map at H = 4 T. Total 128 x 128 conductance values are
plotted over a normalized scale of 0 to 1 and it is also common
to the conductance map at H = 1.5 T shown in panel (b).

part of it the superconducting gap opens with the BCS-
like quasi-particle peaks, however, in several curves the
peaks are either suppressed or altogether absent, with
the equivalent rounding near zero bias voltage. In order
to generate a picture of the conductance distribution at
the selected bias voltage of 0.25 mV, all the conductance
curves are normalized at 1 mV. The normalized conduc-
tance varies from 0 to 1, as shown in the color scale in
Fig. 1(a). The dark blue color is the region where the
conductance at 0.25 mV reaches near zero values, while
the red region has the conductance close to 0.7 and is
also a representative of the region where the curves with-
out quasi-particle peaks are seen. Spatial changes were
reported previously in terms of the average superconduct-
ing gap of Ref.[14], however a clear distinction between
two behaviors was not established. In the panel (b), the
average of the sum of the conductance in the bias voltage
range -1 to +1 mV (on the color scale from 0 to 1) for
each of the 128 x 128 curves is plotted over the same area.
The average of the sum of the conductance values in the
form of the histogram are shown in the inset in panel
(b). The histograms peaks at 0.75, and the average con-
ductance spatially varies in a range about 30 percent to
that of the full range. In particular 5 percent change
at the right edge of the histogram pertains to the slight
contrast present between the regions with two distinct
conductance behavior shown in panel (a). The other ob-
servation from panel (b) is that the average conductance
deviates (in fact, is lower) from unity which it would be
in the case of a BCS-superconducting curve.

Sacepe	et	al,	Nature	Phys.	2011,		InO	15-30	nm	films	

Noat	et	al,	PRB	2013,		
NbN		2-15		nm	films	

Kulkarni	et	al,	TiN	5nm	films	

Tunneling spectroscopy near superconductor-insulator transition 

Ø  SoE	gap	surviving	across	SIT	and	superconductor-metal	
transiIon	

Ø  Strong	point-to-point	fluctuaIons	of	tunneling	LDOS	

Sigma-model	RG	theory:			Burmistrov,	Gornyi,	ADM,	arXiv:1603.03017		



Delocalization by inelastic processes

Problem of “many-body localization”:

assume that all single-partcile states are localized
(e.g., 1D or quasi-1D, or a tight-binding model of any d with suffi-
ciently strong disorder)

what happens at finite T (in the absence of external bath)?
Localization, conductivity, other observables – ?

Two opposite limits considered long ago:

Fleishman, Anderson ’80: low T (or strong disorder):
Localization in many-body space, zero conductivity

Altshuler, Aronov, Khmelnitskii ’82: high T :
dephasing reducing localization to weak-localisation effects,
almost classical conductivity

−→ there should be a transition at an intermediate T
(or intermediate disorder strength at fixed T )

more recently: Gornyi, ADM, Polyakov ’05;
Basko, Aleiner, Altshuler ’06, ...



Localization in Fock space

Gornyi, ADM, Polyakov ’05

Single-particle excitation decay processes:

α
β

γ

δ

α

γ

1

2

γ

βn

0

a) b)

β

βn

−

Lowest order process: e→ eeh −→ Golden rule τ−1
φ ∼ V 2/∆

(3)
ξ

V ∼ α∆ξ – interaction matrix element, α - interaction strength,

∆ξ - single-particle level spacing in localization volume,

∆
(3)
ξ ∼ ∆2

ξ/T - three-particle level spacing in localization volume

Golden rule is justified only if V > ∆
(3)
ξ ,

which corresponds to T > T3, where T3 ∼ ∆ξ/α

V < ∆
(3)
ξ −→ no transition on the Golden Rule level



Localization in Fock space and MIT

Gornyi, ADM, Polyakov ’05

Higher orders? −→ have to analyze V (n)/∆(2n+1)

V (n) =
∑

diagrams

∑
γ1,...γn−1

V1

n−1∏
i=1

Vi+1

Ei − εγi

−→ optimal paths: “ballistic”:

a “string” with a few excitations per localization volume
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∆(2n+1)
∼
(
T

T3

)n
−→ Localization transition at T = Tc ∼ T3



Mapping onto Bethe lattice
Gornyi, ADM, Polyakov ’05

Interacting problem in Fock space
−→ Anderson model on the Bethe lattice

−→ Metal-Insulator Transition at

∆/V = 4 lnK
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n=2

n=1

n=0

K: Coordination number K ∼
∆ξ

∆
(3)
ξ

∼
T

∆ξ

∆: Level spacing of n = 1 states: ∆ = ∆
(3)
ξ

V : hopping matrix element:
interaction matrix element V ∼ α∆ξ

−→ transition temperature Tc =
∆ξ

α lnα−1

Basko, Aleiner, Altshuler ’06: same result from self-consistent Born approx.



Summary

• Anderson localization: basic properties, field theory

• Wave function multifractality

• Symmetries of disordered systems

• Manifestations of topology in localization theory

• Influence of electron-electron interaction

Collaboration:
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M. Zirnbauer (Köln)
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Y. Fyodorov (Notthingham – London)
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