Возможности просвечивающей электронной микроскопии в исследовании структуры материалов

Артем Абакумов

Центр по электрохимическому хранению энергии, Сколтех Химический факультет, МГУ им. М.В.Ломоносова

Колонна микроскопа

Электронная пушка

Термоэмиссионный катод (LaB₆)

"Холодный" катод с полевой эмиссией

Ускоряющее напряжение 80 – 400 кВ

Конденсорная система

Создает оптимальное освещение образца:

интенсивность,

параллельный пучок,

сходящийся пучок

Держатель образца

Двукружный гониометр с диапазоном углов поворота ±40 – 60°

Объективная линза

"Сердце" микроскопа

Сильная короткофокусная линза

Создает первичное изображение с увеличением 50 – 100х

Несовершенства объективной линзы наиболее критичны для характеристик ПЭМ (в особенности – разрешение)

Система регистрации

Фотопластинка

Видеокамера

ССО камера

Детектор неупруго рассеянных электронов

Спектрометр энергетических потерь электронов

Промежуточные и проекторная линзы

Дополнительное увеличение до 100.000 – 1.000.000х

Переключение между режимами изображения и дифракции

Передача изображения на систему регистрации

Skoltech

Волновые свойства электрона

Энергия электрона в электрическом поле с потенциалом U:

$$E = e\mathbf{U} = \frac{m_o v^2}{2} \Longrightarrow v = \sqrt{\frac{2e\mathbf{U}}{m_o}}$$

$$\lambda = \frac{h}{mv} \implies \lambda = \frac{h}{\sqrt{2em_0U}} = \frac{1.226}{\sqrt{U}}$$
 (U b B, λ b HM)

Релятивистская поправка (U > 100 кВ):

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \implies \lambda = \frac{h}{\sqrt{2m_0 e U(1 + \frac{eU}{2m_0 c^2})}} = \frac{1.226}{\sqrt{U}} (1 + 9.79.10^{-7} \text{ U})^{1/2}$$

Энергия, кеВ	Длина волны, пм	Скорость (10 ⁹ м/с)
100	3.7	1.644
120	3.35	1.759
200	2.51	2.086
300	1.97	2.330
400	1.64	2.484

Параллельный и сходящийся электронный пучок

Skoltech

Электронная дифракция

Сфера Эвальда и обратная решетка

- Начертите сферу Эвальда с радиусом 1/λ
- 2. Поместите кристалл в центр сферы
- Проведите волновой вектор первичного пучка **k**₀ из центра сферы
- Поместите начало координат обратной решетки О* в точку пересечения сферы Эвальда и k₀
- Поверните кристалл и обратную решетку так, чтобы узел *hkl* располагался на сфере Эвальда
- Волновой вектор дифракционного луча k соединит центр сферы и узел *hkl*

Сфера Эвальда и обратная решетка

Электронная дифракция

Изображение электронной дифракции – сечение обратной решетки кристалла

Почему мы видим сечение обратной решетки?

Skolkovo Institute of Science and Technology

Реконструкция трехмерной обратной решетки

Skoltech

Электронная дифракция и рентгенография порошка

Несоразмерно модулированная структура:

 $a \approx b \approx c \approx 3.9$ Å, $\beta \neq 90^{\circ}$

 $\mathbf{q} = \alpha \mathbf{a}^* + \gamma \mathbf{c}^*$

(3+1)-мерная пр. группа: *X2/m*(α0γ)

X = [1/2, 1/2, 1/2, 1/2]

Параметры ячейки: a = 3.8899(2)Å b = 3.8924(2)Å c = 4.0897(2)Å $\beta = 91.947(3)^{\circ}$ $q = \alpha a^* + \gamma c^*$ $\alpha = 0.05011(7)$ $\gamma = 0.09188(6)$

набор сечений обратной решетки

сканирование обратного пространства с малым угловым шагом

from U.Kolb, Automated Electron Diffraction Tomography

наклон

Zhang, Oleynikov, Z. Kristallogr., 2010, 225, 94

D.Batuk et al., Acta Cryst. (2015). B71, 127

Интенсивности на электронограммах

- проблемы с систематическими погасаниями
- интенсивности бесполезны для структурных расчетов

динамическая дифракция

Кинематическое приближение справедливо для слабо рассеивающих кристаллов до толщин t < 100Å и для кристаллов с тяжелыми атомами до t < 10Å

экспериментальная дифракция

кинематический расчет

	Порошковая РД			Электронная томография			
Атом	x/a	y/b	z/c	x/a	y/b	z/c	BVS
Li	0	0	0	0	0	0	0.94(1)
Fe	0.2823(3)	1/4	0.974(1)	0.2809(6)	1/4	0.972(2)	2.00(4)
Р	0.0966(6)	1/4	0.422(1)	0.094(1)	1/4	0.408(3)	5.6(2)
01	0.092(1)	1/4	0.747(3)	0.094(2)	1/4	0.726(5)	2.0(1)
O2	0.455(2)	1/4	0.203(2)	0.458(1)	1/4	0.187(5)	2.21(8)
O3	0.164(1)	0.051(2)	0.285(2)	0.165(1)	0.047(2)	0.296(4)	2.15(5)

DIMENSIONS RULER

RESOLVING POWER OF THE INSTRUMENTS

$$r_{min} = 0.9 C_s^{1/4} \lambda^{3/4}$$
: U = 200 кВ, $\lambda = 0.0025$ нм, $C_s = 1.0$ мм \Rightarrow $r_{min} = 0.3$ нм

Skolkovo Institute of Science and Technology

Параллельный и сходящийся электронный пучок

Сканирующая просвечиваюшая электронная микроскопия

HAADF-STEM – high angle annular dark field scanning transmission electron microscopy

Контраст на изображении HAADF-STEM:

- сильно зависит от среднего атомного номера в атомной колонке;
- мало зависит от динамических эффектов;
- мало зависит от дефокуса;
- мало зависит от толщины образца

Пространственное разрешение ограничено размером электронного зонда

Перовскит Bi_{0.31}Pb_{0.65}Fe_{1.04}O_{2.67}

A.Abakumov., Chem. Mater., 2011, 23, 255

Перовскит Bi_{0.31}Pb_{0.65}Fe_{1.04}O_{2.67}

— (001)_р фрагменты

(101) _р фрагменты плоскости (*h*0*l*)_р : [*l*-*h*]×(001)_р + *h*×(101)_р

A.Abakumov., Chem. Mater., 2011, 23, 255

Сканирующая просвечиваюшая электронная микроскопия

ABF-STEM – annular bright field scanning transmission electron microscopy

визуализация легких элементов (лития, кислорода, водорода)

35

Перовскит Bi_{0.31}Pb_{0.65}Fe_{1.04}O_{2.67}

Слоистые катоды Li-ионных аккумуляторов

- мигрирует ли М катион в другие позиции?
- в какие позиции?
- обратима ли эта миграция?

Исходный Li₂MO₃

- что происходит с кислородной подрешеткой?

Гипотетическая полностью делитиированная структура

Миграция катионов М в октаэдрические пустоты

Миграция катионов М в тетраэдрические пустоты

Слоистые катоды Li-ионных аккумуляторов

Исходный

Заряженный до 4.6В

Структурно-негомогенное заряженное состояние

HADF signal

M.Sathiya et al, *Nature Mater.*, 14, 230 2015

Образование "пероксо" групп в заряженных катодах

STEM для Li_{0.5}IrO₃ (4.5 B)

 $Li_2IrO_3 → Li_{0.5}IrO_3$: окисление $Ir^{4+} → Ir^{5+}$ и $O^{2-} → O_2^{n-}$ (n<4), сокращение расстояний O-O

Проекция расстояний О-О из ABF-STEM: короткое: 1.56(1)Å длинное: 1.83(1)Å

Проекция расстояний О-О из DFT (Li_{0.5}IrO₃): короткое: 1.48Å длинное: 1.85Å

E.McCalla et al., Science, 350, 1516 (2015)

Хим. состав и хим. связь с атомным разрешением

Skoltech

Допирование PbTiO₃ катионами Fe³⁺: Pb_{1-y}(Ti_{1-x}Fe_x)O_{3-x/2}

Допирование PbTiO₃ катионами Fe³⁺: Pb_{1-y}(Ti_{1-x}Fe_x)O_{3-x/2}

Fe-K map Fe+Ti map HAADF-STEM Ti-K map STEM-EDX x = 0.2HAADF-STEM Fe-L_{3.2} map $Ti-L_{3,2}$ map Fe+Ti map STEM-EELS x = 0.2

Сегрегация катионов Fe³⁺ на планарных дефектах (плоскостях кристаллографического сдвига)

D.Batuk et al, Angew. Chem., 54, 14787 (2015)

Координационное число переходного металла

Спасибо за внимание!

