Materials for hydrogen economy: past, current and future

Institute of Condensed Matter and Nanosciences Louvain-la-Neuve, Belgium

Yaroslav Filinchuk

www.filinchuk.com

50th School on Condensed Matter Physics, PNPI, St. Petersburg 14 – 19 March 2016

Université catholique de Louvain

Mer du Nord Bruxelles Saint-Gilles Bruxelles Woluwe Tournai Mons Charleroi FRANCE LUXEMBOURG

PAYS - BAS

Intermittent Energy Sources

- Wind Tide
- Sun
 Wave
- Hydro
- ⇒ Difficult to integrate to base power

Figure A.30 – 2009/10 Daily Peak and Wind Generation

Energy vectors

WIND FARMS PAID £7M TO SWITCH OFF'

UK Press Association on Google News, 11 October, 2011.

Wind farms operators have been paid nearly £7 million this year to switch off turbines, the Government has said.

'Seventeen wind farms across the UK were told to shut down on a total of 37 days, with the farms' owners compensated for not generating power.

'So-called "constraint payments" are made when too much electricity floods the Grid, with the network unable to absorb the power generated.

http://www.windbyte.co.uk/windpower.html

We need an energy vector which will transport energy from the production site to the user. Electricity is a good energy vector but it could not be stored in large quantity. Thus, we need another type of energy vector.

Energy vectors

GREENING' THE LAND

We need an energy vector which will transport energy from the production site to the user. Electricity is a good energy vector but it could not be stored in large quantity. Thus, we need another type of energy vector.

Hydrogen economy

• Hydrogen, in various forms (gas, liquid, hydrides) is used to store and transport energy

• Hydrogen is traded, as now oil

• Reduce dependency on fossil fuels for: ecological, polytical and economical reasons ...this has more to do with energy production

Energy density

Lithium-ion batteries up to 1 MJ/kg

For practical applications hydrogen storage density has to be increased

Hydrogen storage is the main issue

Especially for mobile applications, e.g. transport

Approaches to storage

- close packing of H atoms (volume density)
- light container
- H release, reversibility (thermodynamics)
- low cost and safety

(weight density) (materials science)

Liquid hydrogen 71 kg H_2/m^3 , 100 % wt. 1 bar, 20 K

Compressed hydrogen 33 kg H_2/m^3 , 13 % wt. 700 bar, 298 K

Physical adsorption 20 kg H_2/m^3 , 4 % wt. 70 bar, 65 K

Chemical absorption 150 kg H₂/m³, 18 % wt. 1 bar, 298 K

Stationary applications

Typical Layout of a metal hydride storage system with heat exchang and hot water taps for dehydriding

184 DER SPIEGEL 3/1996

Mobile applications

Hydrogen for vehicles

Hydrogen could be used directly in Internal combustion engine (ICE) or with a fuel cell (FC)

ICE:

- Low cost
- Well known engine
- Production of NO_X
- Low efficiency
- Noise

FC:

- High cost
- New type of engine
- Pollution free
- High efficiency
- Silent

Batteries vs hydrogen

We should not oppose « batteries » to hydrogen + FC: both are chemical means of energy storage, used in electrically driven cars Both revolutionize the cars we know

Hydrogen car

Toyota Mirai, 700 bar, 5 kg H₂, filled by precooled gas

Carbon reinforced fuel tank

Burst test sample, HyTREC facility, Fukuoka, Japan

HyTREC test facility, Fukuoka prefecture

Helps industries to implement hydrogen technologies

Happy driver

HyTREC facility, Fukuoka, Japan

Strategic Road Map for Hydrogen and Fuel Cells

<u>Phase 3</u> Establishment of a zero-carbon emission hydrogen supply system throughout the manufacturing process

Full-fieldged operation of manufacturing, transportation and storage of zero-carbon emission hydrogen, by combining the manufacturing technology with a CCS process or with making use of domestic and overseas renewable energy

Market scale of the equipment and infrastructure businesses related to hydrogen and fuel cells in JapanApprox. 1 trillion yen in 2030 \rightarrow Approx. 8 trillion yen in 2050

Market scale: 7.46 Billion EU in 2030, 59.7 Billion EU in 2050

Hydrogen programs in the Western world

Japan: implementation of the strategic plan, on all levels Run by the government + regional initiatives

EU: trying to lunch to the markets. Research is limited only to high TRLs within Fuel Cell Hydrogen Joint Undertaking (FCH JU). Run by big industry that is also defining the policy

USA: slow recovery after halting the hydrogen program by Obama's administration. Centres of excellentce operated by the DOE Mostly academic + initiatives of some states (California)

Hydrogen landscape is defined by

Cheap oil: less motivation

Big public and polytical attention to Li-ion batteries

Large investment made into the compressed hydrogen gas

These are constraints of today!

Fundamental drivers of hydrogen economy

High energy density

Much cheaper and much safer than Li-ion batteries

Raw materials are less critical

Residential systems

H2One, Toshiba *Kyushu Resort Hotel* one-week's supply of electricity and hot water for 300 people using CO_2 -free hydrogen energy

Enhancing the electrical grid

MYRTE, Corsica $Sun \rightarrow H_2 \rightarrow$ electricity to the grid on demand

Large scale stationary systems

Hybrid cars: run on hydrogen

Commercial hydrogen cars from 3 manufacturers

Kyushu University, Japan

Japanese vision of the future

Renewable energy + H-storage + distribution

Hydrogen storage: main classes

Intermetallic solid solutions & compounds: LaNi₅-H, FeTi-H, Mg₂FeH₆

Amides: $LiNH_2 + 2LiH \leftrightarrow Li_3N + H_2$

Alanates: $NaAlH_4 \leftrightarrow NaH + Al + H_2$ (Ti-catalyzed reversibility)

Borohydrides: $LiBH_4 + MgH_2 \leftrightarrow MgB_2 + LiH + H_2$ (reactive hydride composite)

Catalyzed hydrolysis: $NaBH_4 + H_2O \rightarrow NaBO_2 + H_2$

Liquid organic hydrogen carriers

Solid-state hydrogen storage

DOE goal: 5.5 wt. % H_2 for the complete system

Complex hydrides Light: Z = 1-14

Too heavy

Too stable, non-reversible Porous systems MOFs & carbons

Interact weakly with H₂

M-H accumulators Future: stationary use

Aimed for mobile applications

Different bonding:

interstitial H covalent M-H (M = B, N, A1...) physisorbed H₂

Metallic hydrides

α -Phase: Solid Solution

β-Phase: Hydride Phase

Schlapbach & Züttel, Nature, 414, 353-358, 2001

	p _{eq} at RT	
10 ⁻²⁴	1.7	<u> </u>
LaH ₃	LaNi ₅ H _{6.7}	NiH _{0.8}

 $\Delta G = \Delta H - T\Delta S$ RT ln (p_{eq}) = $\Delta H - T\Delta S$

Hydrogen in metals

LaNi₅H₆ **« Geometric » model** (Westlake, 1983)

- atoms are rigid spheres
- "interstitial" hole size > 0.38Å
- H-H > 2.1 Å (H-H blocking)

Actually, there is a rich chemistry of M-H interactions

Synchrotron: real structure

La₂MgNi₂ Tetragonal 7.64 3.94 Å

La₂MgNi₂H₈ Monoclinic 11.84 7.82 11.96 Å 92.78 °

Metal atom shifts < 0.65 Å

Metal-hydride complexes [Ni₂H₇]⁷⁻ & [Ni₄H₁₂]¹²⁻

34

 T_{dec} depends on the electronegativity of the complex-forming metal

 $M(BH_4)_n$

Rude et al., Phys. Status Solidi A 208 (2011) 1754

M[M'_n(BH₄)_m] Bimetallic borohydrides: 2 bonding schemes

[Sc(BH₄)₄]⁻ is a complex anion
Na is a countercation

Černý et al., JPCC, 114 (2010) 1357

[Zn₂(BH₄)₅]⁻ is a complex anion
Li is a countercation

Ravnsbæk et al., Angew. Chem. Int. Ed., 48 (2009) 6659

K[Zn(BH₄)Cl₂] Combined use of BH₄ and Cl ligands

Complex anion [Zn(BH₄)Cl₂]⁻

These compounds decompose at ~100°C
controlled charge transfer to BH₄

Ravnsbæk et al., Eur. J. Inorg. Chem., (2010) 1608

Polynuclear complexes

Complex anion [Ce₄Cl₄(BH₄)₁₂]⁻

 $LiCeCl(BH_4)_3$

Li-ion conductor at room T

Li disorder: XRD + NPD + DFT

Ley et al., Chem. Mater., 24 (2012) 1654

Li

Paddle-wheel mechanism

 $LiCeCl(BH_4)_3$ is a good Li-ion conductor

Ley et al., Chem. Mater., 24 (2012) 1654

NMR data are governed by a combined effect of two types of motion. They suggest that the Li ion jumps and the reorientational jumps of BH₄ groups in LiLa(BH₄)₃Cl may be correlated.

Li

La

Skripov et al., JPCC, 117 (2013) 14965

 $(Li,Na)_2B_{12}H_{12}$ reaches 0.79 S/cm at 550 K

He et al., Chem. Mater., (2015) 5483

Synthetic screening & fast characterization

New structures from mixtures of unknown phases

"Decomposition-aided indexing" + solution from difference curves

Z. Kristallogr. 2011, 226, 882-891.

Automated gas dosing

Lab: Mo rotating anode, focusing mirror, IP detector, gas + cooler/heater

Synchrotrons: SNBL/ESRF, MS/SLS(PSI), ID15/ESRF, I11/DiamondNeutrons: NIST, HRPT/SINQ(PSI), E9/Berlin42

$Mg(BH_4)_2$ Less ionic – the first porous borohydride

α-phase, the unoccupied voids are shown as large spheres They account for 6.4% of the space Filinchuk *et al.*, Chem. Mater., 21 (2009) 925

The first open-pore hydrides γ -Mg(BH₄)₂ and γ -Mn(BH₄)₂

Filinchuk et al., Angew. Chem. Int. Ed., 50 (2011) 11162 Richter et al., Dalton Trans., 44 (2015) 3988 44

 γ -Mg(BH₄)₂

Pressure-collapsed, amorphous: ultra-dense hydride, 145 g H / litre

Heats of adsorption from diffraction

 $\ln \frac{P_1}{P_2} = \frac{\Delta h}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) - \text{derived from Clausius-Clapeyron equation}$

Group of Michel Hirscher: confirms 3 wt % H₂, 5.8 kJ/mole H₂

γ -Mg(BH₄)₂ The first open-pore hydride: gas loading

Filinchuk et al., Angew. Chem. Int. Ed., 50 (2011) 11162

BH₄⁻ is coordinated linearly via edges

Filinchuk et al., Angew. Chem. Int. Ed., 50 (2011) 11162

- ✓ The hybrid hydrides are designed and obtained for the first time
- ✓ High BH₄ dynamics may allow for higher reactivity
- ✓ We are going for porous Im-BH₄ frameworks, using substituted imidazolates New compositions are obtained with methyl- and benzimidazolates

Porosity can allow for reactions inside the pores !

Reactive hydride composites

reversible

wt.%

Acknowledgements

Funding

Academie Louvain FNRS: CC, PDR, EQP FNRS-FRIA Marie-Curie / FSR General Motors IMCN@UCL WBI COST Action MP1103

UCL: Anna Miglio, Geoffroy Hautier Uni Amiens: Raphael Janot IFE: Magnus Sørby IMP RAS: Alexander Skripov GM: Scott Jorgensen Uni Århus: Bo Richter, Torben Jensen MPI: Hyunchul Oh, Michael Hirscher

Facilities

H₂FC/IFE, SNBL/ESRF, NIST, SINQ, HMI, SLS/PSI

450

500

400

MgH₂

2 LiBH₄ + MgH₂

LIBH₄

LINH₂

LINH₂

Gas cells – sapphire tube

Short mount – fits into Lab setups

• Left + right handed threads to avoid capillary twisting

Jensen et al., J. Appl. Cryst, 43 (2010) 1456

Single-crystal sapphire tube

- Background-free
- Inert
- Robust
- Expensive
- Absorbing X-rays

Suitabe for a very high-P systems or for highly reactive samples

Reactive hydride composites: practice

Sudik *et al.*, JPCC 113 (2009) 2004 Ammonia, amidoboranes etc.

- ✓ Given its high polarizing power defined by the exceptional charge-to-radius ratio Al³⁺ stands on its own in the bimetallic MAl(BH₄)_n, MAl(NH₂)_n and MAl(NH₂BH₃)_n series
- The activation of neutral molecules, namely ammonia and ammonia borane, requires highly polarizing cation
- ✓ Low weight, high natural abundance
- Chemistry of Al complexes with B- and N-based hydrides has been explored only recently.

Started as a way to stabilize $Al(BH_4)_3$

 $AlCl_3 + 3LiBH_4 \rightarrow Al(BH_4)_3 + 3LiCl$ $Al(BH_4)_3 + MBH_4 \rightarrow M[Al(BH_4)_4]$

No chlorine anions: higher H-content!

M = K Dovgaliuk *et al.*, JPCC, 118 (2014) 145 Knight, et *al.*, JPCC, 117 (2013) 19905

$NH_4[Al(BH_4)_4] \rightarrow Al(BH_4)_3 \cdot NHBH + 3H_2$ at 35 °C

 $Al(BH_4)_3 + NH_4BH_4 \rightarrow NH_4[Al(BH_4)_4]$

59

Al-H(B)

Versatile source of H for RHCs

60

Molecular complexes

 $Al(BH_4)_3 + NH_3BH_3 \rightarrow Al(BH_4)_3 \cdot NH_3BH_3$

Stabilizes the very unstable $Al(BH_4)_3$

AB is coordinated via the boron side

Dovgaliuk et al., Chem. Mater. 2015, 27, 768-777.

Mild & endothermic dehydrogenation

Gravimetric, volumetric and MS studies indicate release of pure H₂ @ 70 °C

Al-H(B)

 $Al(BH_4)_3 \cdot NH_3BH_3 \rightarrow Al(BH_4)_3 \cdot NHBH + 2H_2$

Tuning the AlL₃·R-NH₂BH₃ system

Al(BH₄)₃·NH₃BH₃ is the promising system for the reversible dehydrogenation of AB: endothermic + pure hydrogen desorbed.
 The second decomposition step is the problem.

To get around:

- replace BH₄ by other ligands L, like Cl
- use BH_3NH_2R to stabilize $Al(BH_4)_3$ ·NHBH and to test the reversibility

Tuning the AlL₃·R-NH₂BH₃ system

I – Change of NH_3BH_3 to other ligands ($CH_3NH_3BH_3$, ($CH_2NH_2BH_3$)₂ etc.)

Al-H(B)

Works well

Tuning the AlL₃·R-NH₂BH₃ system

II – Change of Al(BH₄)₃ to AlL₃ (L = F⁻, Cl⁻, H⁻)

Al-H(B)

Works well

$2 \operatorname{CH}_3\operatorname{-NH}_2\operatorname{BH}_3 + 2 \operatorname{AlCl}_3 \rightarrow [\operatorname{Al}(\operatorname{CH}_3\operatorname{-NH}_2\operatorname{BH}_3)_2\operatorname{Cl}_2][\operatorname{AlCl}_4]$

Twice more AB per Al

Al-based amidoborane

 $NaAlH_4 + 4 NH_3BH_3 \rightarrow Na[Al(NH_2BH_3)_4] + 4 H_2$

