Ядерно-физические методики анализа на базе нейтронного генератора НГ-150 в Лаборатории Ядерных Реакций Института Ядерной Физики Академии Наук Республики Узбекистан (г. Ташкент)

С.В. Артемов^{1#}, <u>А.Г. Бажажин</u>^{2*}, О.Ш. Жураев¹, А.А. Караходжаев¹

¹ЛЯР ИЯФ АН РУз (г. Ташкент), [#]artemov@inp.uz; ²Сектор №1 Трековых детекторов НЭОМД ЛФВЭ ОИЯИ (г. Дубна),*bajajin@jinr.ru.

Описание и вид нейтронного генератора НГ-150

Нейтронный генератор НГ-150 разработки НИИЭФА (Санкт-Петербург) представляет собой ускоритель типа Кокрофта-Уолтона, который при взаимодействии ускоренных до ~ 150 кэВ ионов дейтерия с твёрдой тритиевой мишенью (TiT_{1 5-1 8}) генерирует нейтроны с энергией ~ 14 МэВ и выходом до 10¹¹ н/с в 4*π* при монохроматичности не хуже 100 кэВ FWHM (реакция T(d,n)⁴He).

При замене тритиевой мишени на дейтериевую по реакции D(d,n)³Не генерируются нейтроны с энергией около 2.5 МэВ при выходе нейтронов ~ на два порядка ниже, чем в первой реакции.

> **E**_d=150 keV Твёрдотельная ТіD или ТіТ мишень $d+D\rightarrow^{3}He+n$, $E_{n} \sim 2.5 \text{ MeV}$ $d+T \rightarrow ^{4}He+n, E_{n} \sim 14 MeV$

Не деструктивный метод измерения профиля концентрации легчайших элементов (NERD - Neutron-induced Elastic Recoil Detection)

ΔЕ-Е телескоп полупро-

Затем энергетический спектр пересчитывается в глубинный спектр – в зависимость количества водорода от глубины залегания:

Из данных спектров видно, что водород внутри образца находится по всей толщине на глубинах вплоть до 1800 мкм. Дейтерий в образце находится слоями на глубинах до ~800 мкм. Тритий в образце находится в приповерхностной области на глубинах не более ~30 мкм.

Метод нейтронно-активационного анализа на быстрых нейтронах с энергией 14 МэВ (ААFN -**Activation Analysis on Fast Neutrons)**

Метод основан на ядерных реакциях (n,p), (n,d) и (n,2n) с последующим временным и амплитудным анализом у-спектров от активированных проб.

Наведенная активность изотопов определялась относительным методом. В этом случае масса определяемого элемента в образце вычисляется по формуле:

где N_{образ.} – число отсчетов в пике полного поглощения в исследуемом образце для конкретной гамма – ЛИНИИ,

N_{этал.} – то же для эталонного

Основные технические данные НГ-150:

- •Максимальный поток нейтронов **2**•10¹⁰ н/сек. •Номинальная энергия ускоренных ионов 150 кэВ. ■Пределы регулировки энергии ионов **50-150 кэВ**.

(слева) и крепление основных узлов на фланце

водниковых детекторов

Принципиальные схемы методики определения профиля концентрации легчайших элементов (водорода и гелия) и их изотопов в приповерхностных слоях различных материалов путем измерения энергетических спектров ядер отдачи при облучении быстрыми нейтронами с идентификацией ядра отдачи $\Delta E - E$ и $\Delta E 1 - \Delta E 2 - E$ – детектирующими методами показана ниже.

Результаты анализа с помощью метода NERD

Для настройки и проверки качества идентификации сорта частиц были изготовлены образцы а) и б).

образца, **М**_{этал.} – масса эталонного образца, грамм.

Регистрация наведенной радиоактивности осуществлялась полупроводниковым НР-Ge детектором с эффективностью 25% (фирма CANBERRA). Энергетическое разрешение гамма – спектрометра на линии 1332 кэВ равно 1,8 кэВ.

Спектр γ-излучения технических алмазов партии №2

Исследуемые кристаллы алмаза на содержание легких элементов примесей и эталонные образцы облучались одновременно потоком быстрых нейтронов с интенсивностью ~ 10¹⁰ нейтрон/с. и с энергией 14 МэВ. Время облучения образцов выбиралось равным нескольким периодам полураспада определяемого радиоактивного изотопа: для $^{13}N - 30$ мин., для Si - около 10 мин, а для Mn – 10 мин.

Содержание элементов примесей в образцах технических алмазов партии №2						
Macca	²⁸ Si+ ²⁹ Si+ ³⁰ Si		⁵⁵ Mn		$^{13}N + ^{14}N$	
10-3 грамм	т, грамм	%	m,	%	т, грамм	%
			грамм			
4,2	0,32·10 ⁻³	7,61±1,90	0,16.10-3	5,0±1,5	0,16·10 ⁻³ 0,18·10 ⁻³	3,80±1,33 4,00±1,33

•Ток пучка ионов на мишени до 3 мА. Диаметр пучка на мишени в номинальном режиме 10-30 MM.

•Режим работы непрерывный.

Входное окно камеры и мишенное устройство

Входное окно стальной камеры реакции. Справа мишенное устройство нейтронного генератора

Элементный состав образца мумиё