КВАНТОВАЯ МОДЕЛЬ МАГНИТНОЙ ДИНАМИКИ ОДНОДОМЕННЫХ ЧАСТИЦ ДЛЯ ОПИСАНИЯ КРИВЫХ НАМАГНИЧИВАНИЯ И МЁССБАУЭРОВСКИХ СПЕКТРОВ МАГНИТНЫХ НАНОМАТЕРИАЛОВ В СЛАБОМ МАГНИТНОМ ПОЛЕ

И.Н.Мищенко, М.А.Чуев

Физико-технологический институт Российской академии наук, Москва, Россия

IlyaMischenko@rambler.ru

Магнитная динамика однодоменных частиц. Макроскопическое описание.

Магнитные наночастицы играют всё большую роль в современной технологии, что настоятельно требует совершенствования средств и методик их диагностики. В то же время интерпретация результатов даже равновесных магнитных измерений до сих пор проводится почти исключительно на основе классической формулы Ланжевена (1905), не учитывающей собственной магнитной анизотропии частиц. Включение в рассмотрение внутренней магнитной энергии частицы с учётом наведённых случайных полей окружения [1] приводит к кинетическому уравнению для вероятных ориентаций её магнитного момента на поверхности сферы, эффективные общие методы решения которого до настоящего времени не найдены.

Недавно был предложен феноменологический подход [2], позволивший факторизовать решаемую задачу и сводящийся к выделению стационарных состояний частицы в виде эквипотенциальных орбит прецессии (слева вверху) в суммарном собственном и приложенном поле в отсутствии диссипации. Скорость прецессии непрерывно меняется вдоль каждой траектории (слева внизу), а значения физических наблюдаемых в том или ином состоянии вычисляются как криволинейные интегралы вдоль соответствующей орбиты с учётом различного времени прохождения разных участков пути. Статистическое усреднение по состояниям с разной энергией позволяет рассчитывать равновесные макроскопические характеристики исследуемой системы (например, намагниченность, справа вверху), а влияние диффузии сводиться к перенормировке угловых скоростей прецессии и приводит к выравниванию равновесных заселённостей разных участков сферы (справа в центре). Температурная зависимость коэффициента диффузии может приводить к реализации для одной системы как высокотемпературного ланжевеновского поведения, так и описанной специфичной термодинамики в области низких температур (справа внизу).

Квантовая статистика магнитных наночастиц.

Релаксационные эффекты в равновесных кривых намагничивания проявляются лишь при скоростях диффузии, сравнимых с характерными частотами прецессии магнитных моментов частиц, для реальных материалов обычно лежащими в гигагерцовом диапазоне. Если интенсивность броуновского блуждания существенно меньше скорости прецессии, расчёт намагниченности образца можно провести, не привлекая динамического описания, а ограничиваясь лишь усреднёнными по времени характеристиками системы. В этой ситуации наиболее естественным представляется квантовое рассмотрение задачи [3], при котором расчёт стационарных состояний сводится к решению полной задачи на собственные значения для спина частицы в комбинированном внутреннем и внешнем поле (слева). Простота предложенного подхода обусловлена как трёхдиагональной формой полного гамильтониана, так и быстрым выходом решения на макроскопический предел (справа вверху), что позволяет описывать равновесное поведение реальных нанокомпозитов во внешних полях с учётом как естественного разброса размеров частиц, так и их взаимодействия с другими частицами ансамбля (справа внизу).

Релаксационные мёссбауэровские спектры во внешнем поле

Случайная переориентация магнитного момента частицы под действием окружения, слабо влияющая на равновесные кривые намагничивания, может оказаться критической при других методах исследования, например, в мёссбауэровской спектроскопии [4], где основным временным масштабом служит период полураспада возбуждённого состояния ядра, для наиболее распространённых изотопов составляющий доли микросекунды. В этом случае приходиться принимать во внимание возможные переходы между стационарными состояниями частицы (слева), конкретное представление которых существенно зависит от упорядоченности базового набора состояний. В качестве критерия упорядочения удобно выбирать квазиклассическое описание [3], согласно которому переходы возможны лишь между ближайшими соседями, образующими три ветви релаксации вблизи двух минимумов и одного максимума энергии. Более того, само это приближение оказывается в достаточной степени оправданным, чтобы использовать его как для моделирования, так и для анализа экспериментальных данных (справа), с восстановлением физических характеристик исследуемых систем (внизу).

$K\overline{V}/k_{\rm B}$, K	$\sigma_{_d}$ / \overline{d}	$D(T = 80, 190, 300 \text{ K}), M\Gamma$ ц	h(H=0.4, 0.8, 2.4 кЭ)
360 (20)	0.31 (2)	2.5 (6), 5.7 (8), 12.3 (5)	0.95 (1), 1.33 (2), 1.50 (2)

0.31(2)2.5 (6), 5.7 (8), 12.3 (5) 0.95(1), 1.33(2), 1.50(2)

Пути дальнейшего развития

Разработанный подход носит универсальный характер и может применяться для описания широкого круга динамических эффектов в магнитных наночастицах, например, магнитного гистерезиса с характерными временами установления равновесия от секунд до миллисекунд. Другим важным аспектом дальнейшего развития метода должна стать разработка теории, применимой для описания специфичной термо- и магнитной динамики неферромагнитных частиц [5, 6], кристаллическая структура которых приводит к формированию нескольких магнитных подрешёток, связанных друг с другом обменным взаимодействием и находящихся в поле собственной магнитной анизотропии.

Благодарим В.М. Черепанова и М.А. Поликарпова (НИЦ КИ) за предоставленные экспериментальные данные. Работа выполнена при поддержке РНФ, грант № 14-15-01096.

- 1. Brown W.F. Thermal fluctuations of a single-domain particle. Phys. Rev., 130, 5, 1963.
- 2. М.А. Чуев. Неланжевеновская высокотемпературная намагниченность наночастиц в слабом магнитном поле. ЖЭТФ, 135, 2, 2009.
- 3. М.А. Чуев. Многоуровневая релаксационная модель для описания мёссбауэровских спектров наночастиц в магнитном поле. ЖЭТФ, 141, 4, 2012.
- 4. D. H. Jones, K. K. P. Srivastava. Many-state relaxation model for the Mossbauer spectra of superparamagnets. Phys. Rev. B, 34, 1986.
- 5. М.А. Чуев. О термодинамике антиферромагнитных частиц на примере мёссбауэровсой спектроскопии. Письма в ЖЭТФ, 95, 6, 2012.
- 6. М.А. Чуев. Нутации намагниченностей подрешёток и их роль в формировании мёссбауэровских спектров антиферромагнитных наночастиц. Письма в ЖЭТФ, 103, 3, 2016.