

Структурные, колебательные и упругие СВОЙСТВА РЕДКОЗЕМЕЛЬНЫХ ФЕРРОБОРАТОВ *R***FE3(BO3)4:** ПЕРВОПРИНЦИПНЫЙ РАСЧЕТ

Владислав П. Петров, Владимир А. Чернышев, Анатолий Е. Никифоров

Уральский Федеральный университет, Екатеринбург, Россия lancervlad@gmail.com

Кристаллы со структурным типом хантита (простр. группа R32) представляют собой многофункциональные материалы благодаря разнообразию наблюдаемых нелинейно-оптических и лазерных свойств вкупе с высокой механической стабильностью.

В рамках теории функционала плотности (DFT) проведен *ab initio* расчет кристаллической структуры, фононного спектра и упругих свойств кристаллов редкоземельных ферроборатов RFe₃(BO₃)₄ (R = Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu).

Из расчета определены координаты ионов и постоянные решетки в релаксированной элементарной ячейке. Определены частоты и типы фундаментальных колебаний решетки, а также интенсивности линий ИК и КР спектров.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 16-33-00437 мол_а

Методы расчета

Программа CRYSTAL14

Теория функционала плотности (DFT гибридный функционал B3LYP)

Псевдопотенциал для РЗ иона, заменяющий влияние внутренних 4*f* электронов (ECP*n*MWB 4f-incore)

Кристаллическая структура

Структурообразующими единицами являются:

Полноэлектронные базисные наборы гауссова типа (ионы Fe, B, O)

Полная оптимизация структуры (параметр решетки + координаты ионов)

Расчет фононного спектра и упругих постоянных на предварительно оптимизированной структуре

 $E_{xc}^{B3LYP} = (1-a)^* (E_x^{LSDA} + b E_x^{B88}) + a E_x^{HF} + (1-c) E_c^{VWN} + c E_c^{LYP}$

Параметры решетки (a—слева, c—справа) в Å для $RFe_3(BO_3)_4$, R = Ce - Lu

Упругие постоянные

Вид матрицы (6 независимых компонент)

Фононные спектры

 $\Gamma = 7 A_1 \oplus 13 A_2 \oplus 20 E$ (две акустические моды – E and A₂) Рассчитан фононный спектр для всего ряда Ce – Lu, проведено отнесение колебаний. Ниже—спектр $R = \Pr$. (в скобках интенс. ИК мод)

Неприводимое представление	<i>Ab initio</i> , TO	Эксп., ТО	<i>Ab initio</i> , LO	Отнесение
А ₂ (ИК)	$\begin{array}{c} 36,9\ (0.01)\\ 156,6\ (0.07)\\ 191,5\ (0.01)\\ 208,2\ (0.00)\\ 259,6\ (0.12)\\ 306,2\ (0.07)\\ 338,3\ (0.07)\\ 371,2\ (0.02)\\ 621,5\ (0.01)\\ 694,7\ (0.22)\\ 755,7\ (0.04)\\ 1262,4\ (0.04) \end{array}$	50,3 166,1 195,0 - 258,5 299,3 364,7 384,8 678,3 738,1 767,8 1220,6	53,2 176,4 196,4 208,9 283,0 435,9 324,1 365,2 621,6 739,5 795,7 1269,0	Т _z (Pr) R(O2-Fe-O1) T _z (Pr), B(O2-Fe-O3) T _z (Pr), T _z (B1), R(B1O ₃) T _z (B1), R(B1O ₃) T _z (Pr), T _z (B1), R(B1O ₃), R(B2O ₃) T _z (Pr), T _z (B1), R(B1O ₃), R(B2O ₃) T _z (Pr), T _z (B1), R(B1O ₃), R(B2O ₃) плоскостное деформ. (II) внеплоскостное деформ. (II) внеплоскостное деформ. (I) ассиметричное валент. (II)
Неприводи- мое представ- ление	<i>Ab initio</i> , TO 86,5 (<i>o.o3</i>) 160,9 (<i>o.oo</i>)	Эксп., ТО 85,6	<i>Ab initio</i> , LO 94,6 160,9	Отнесение _{T_x,T_y(Pr) B(O1-Fe-O1, O1-Fe-O2)}

¹¹B substituted by ¹⁰B

Изотопическое замещение (на приmepe PrFe₃(BO₃)₄

Диапазон внутренних колебаний (группы ВОЗ) выделен красным

Промоделированные ИК (справа) и КР (слева) спектры (R = Pr)

Ε

(ИК, КР)

 A_1 (KP)

$T_{x,}T_{y}(B_{1}), L(B_{2}O_{3})$	195,3	192,0	193,6 (<i>0.01</i>)	
$T_{x,}T_{y}(Pr), L(B1O_{3}), L(B2O_{3})$	240,0	230,4	239,6 (<i>0.01</i>)	
$L(B1O_3), L(B2O_3), T_x, T_y(B1)$	268,3	261,6	265,0 (<i>0.1</i>)	
$L(B1O_3), L(B2O_3), T_x, T_y(B1)$	282,9	272,6	275,0 (<i>0.09</i>)	
$T_x, T_y(Pr), T_x, T_y(B1), L(B1O_3), L(B2O_3)$	337,1	313,9	316,7 (<i>0.31</i>)	
$T_{x,}T_{y}(Pr), T_{x,}T_{y}(B1), L(B1O_{3})$	358,7	386,8	351,8 (<i>0.09</i>)	
$T_{x,}T_{y}(Pr), T_{x,}T_{y}(B1), L(B2O_{3})$	363,6	-	363,1 (<i>0.01</i>)	
$T_x, T_y(Pr), T_x, T_y(B1), L(B1O_3), L(B2O_3)$	481,0	393,5	376,3 (<i>0.31</i>)	
$T_x, T_y(Pr), T_x, T_y(B1), L(B1O_3), L(B2O_3)$	429,0	438,1	430,1 (<i>0.01</i>)	
плоскостное деформ. (I), (II)	578,1	576,8	576,6 (<i>0.01</i>)	
плоскостное деформ. (I)	618,9	-	618,8 (0.00)	
плоскостное деформ. (II)	667,4	666,3	663,5 (<i>0.03</i>)	
внеплоскостное деформ. (II)	757,4	732,8	755,8 (0.02)	
симметричное валентное (дышащая) (969,1	965,2	968,6 (<i>0.01</i>)	
ассиметричное валентное (I)	1172,0	1180,7	1152,2 (<i>1.00</i>)	
ассиметричное валентное (II)	1236,9	1209,8	1193,5 (<i>0.70</i>)	
ассиметричное валентное (II)	1401,6	1293,2	1287,3 (0.80)	

Ab initio	Эксп. (Nd)
181,5	180
291,4	298
465,5	473
642,7	636
936,3	950
990,4	990
1202,8	1220

Отнесе	ение

$L(B2O_3)$
L(B2O ₃), B(O3-Fe-O1)
$L(B2O_3)$
плоскостное деформ. (II)
дышащая мода (I)
дышащая мода (II)
ссиметричное валент. (II)