Динамика решетки редкоземельных титанатов R₂Ti₂O₇ (R = Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu): ab initio расчет

<u>В.А.Чернышев</u>, В.П.Петров, А.Е.Никифоров

Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия e-mail: vchern@inbox.ru

Расчеты были проведены в рамках МО ЛКАО подхода с использованием методов DFT B3LYP и PBEO в программе CRYSTAL

- CRYSTAL09
- CRYSTAL14 University of Torino

Гибридный функционал

 $E_{xc}^{B3LYP} = (1-a)E_{x}^{LSDA} + aE_{x}^{HF} + bE_{x}^{B88} + (1-c)E_{c}^{VWN} + cE_{c}^{LYP}$

- E_x^{LSDA} -is the local spin density approximation of the exchange
- E_x^{HF} -is the non-local Hartree–Fock exchange
- E_x^{B88} -the Becke 88 exchange functional, it is generalized gradient approximation
- E_c^{VWN} -is the VWN local density approximation of the correlation
- *E*_c^{LYP} -is the correlation functional of Lee, Yang, Parr it is generalized gradient approximation

 $a_0 = 0.20, a_{\rm x} = 0.72, \qquad a_{\rm c} = 0.81$

Basis sets

Для Ті и О были использованы полноэлектронные базисные наборы. Применение «all-electron basis sets» для РЗ иона приводит к большим затратам компьютерных ресурсов.

Мы предположили, структура и динамика решетки может быть описана при замещении внутренних орбиталей, включая 4*f*, на псевдопотенциал. При этом внешние 5*s* и 5*p* оболочки, определяющие химическую связь, описываются валентным базисным набором.

Stuttgart Pseudopotentials (<u>http://www.tc.uni-koeln.de/PP/clickpse.en.html</u>

3 – гадолиний). Смещения атомов в ИК и КР модах (1 – кислород, 2 – титан,

Зависимость частот КР-активных мод от давления

F1u modes

Зависимость частот ИК-активных F_{1u} мод от давления

Birch Murnaghan equation

Зависимость объема ячейки от давления, интерполированная уравнением состояния Берча-Мурнагана

Постоянная решетки $R_2 Ti_2 O_7$ (Å), смещение кислорода, х (отн. ед.)

R		Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Постоянная решетки	B3LYP	10.355	10.278	10.250	10.222	10.195	10.172	10.150	10.122
	PBEO	10.200	10.171	10.144	10.118	10.093	10.072	10.048	10.037
	Exp.	10.196	10.155	10.127	10.105	10.072	-	10.033	10.018
x	B3LYP	0.326	0.327	0.328	0.328	0.329	0.330	0.330	0.331
	PBEO	0.327	0.328	0.329	0.329	0.330	0.330	0.331	0.331
	Exp.	0.322	-	0.323	-	0.331	-	-	0.330
Ионный радиус по Шеннону, Å		1.053	1.04	1.027	1.015	1.004	0.994	0.985	0.977

ИК активные моды (F_{1u}), частоты (TO) в см⁻¹, B3LYP/PBE0. В скобках приведены экспериментальные данные.

Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Ионы- участники
79/99	89/99	91/99	91/98	90/97	89/95	95/101	98/92	R, Ti, 01,02
119/124 (136)	113/125	113/125 (123)	114/125 (121)	116/125 (121)	116/124	116/126	121/122	R, Ti, 01,02
182/190 (242)	175/191	177/193 (245)	178/194 (245)	179/194 (247)	179/194	180/198	194/192	R, Ti, 01,02
269/264 (293)	259/264	258/262 (297)	253/261 (292)	251/258 (292)	249/256	253/259	260/251	R ^s , Ti ^s , 01,02 ^s
349/369 (408)	357/372	361/377 (420)	365/381 (424)	369/385 (427)	372/388	374/391	371/394	R ^s , Ti, O1,O2 ^s
452/441 (456)	438/440	437/441 (450)	436/442 (445)	435/442 (452)	435/442	447/448	450/446	R ^s , Ti, 01,02
540/546 (552)	537/550	540/555 (550)	545/559 (558)	548/563 (560)	552/566	558/570	560/572	R ^s , Ti ^s , O1,O2

КР активные моды в R₂Ti₂O₇ (B3LYP/PBE0), частоты в см⁻¹. В скобках приведены экспериментальные данные

Неприводи мое представле ние	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Ионы- участники
F _{2g}	309/309 (310)	301/310 (303)	301/310 (308)	299/310 (311)	299/310 (311)	298/309	299/315	306/308 (313)	01,02
	453/450 (450)	446/452 (450)	447/453 (451)	447/453 (452)	447/454 (450)	447/454	450/459	453/455 (458)	01,02
	616/587 (554)	580/587 (557)	580/586 (550)	578/585 (562)	577/584 (565)	575/583	575/589	596/583 (609)	01,02
	756/791	771/797	777/802	782/808	787/812	792/817	796/821	788/825 (800)	01,02 ^s
Eg	324/322 (325)	316/325 (313)	317/326 (328)	316/328 (329)	318/329 (331)	318/330	320/336	324/332 (336)	01
A _g	524/523 (517)	516/526 (518)	518/528 (519)	517/530 (522)	518/532 (525)	519/533	522/536	529/535 (520)	01

Модуль объемного сжатия и упругие постоянные (GPa) Gd₂Ti₂O₇. Величины В, C₁₁, C₂₂, C₃₃ при давлении (GPa) возрастают линейно с коэффициентом *а*

Метод		C ₁₁	C ₁₂	C ₄₄	В
B3LYP		345.7	129.6	103.6	201.6
PBEO		356.8	130.3	110.9	205.8
а	B3LYP	4.134	2.585	1.793	3.086
	PBEO	4.654	2.679	1.962	3.333

Проведены ab initio расчеты кристаллической структуры и фононного спектра $R_2Ti_2O_7$ (R = Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). Показано, что в KP-активных модах $R_2Ti_2O_7$ участвуют только ионы кислорода, причем в A_g и E_g –только ионы O, находящиеся в низкосимметричной позиции. В ИК-активных модах участвуют все ионы решетки. Низкочастотные ИК моды характеризуются значительными смещениями P3 ионов.

Исследовано влияние гидростатического сжатия на фононный спектр и упругие свойства решетки $Gd_2Ti_2O_7$. Расчеты с учетом давления до 35 GPa предсказывают устойчивость структуры пирохлора. Смещение кислорода x с увеличением давления фактически не изменяется.

Расчеты фононного спектра $Gd_2Ti_2O_7$, проведенные с учетом давления, показали, что набор мод, соответствующий структуре пирохлора, сохраняется. Можно предположить, что наблюдаемые на эксперименте КР-активные моды, исчезающие при ~8.5 GPa, не обусловлены структурой пирохлора $Gd_2Ti_2O_7$, а относятся к «родительским» фазам Gd_2O_3 и TiO₂.

Показано, что замена внутренних оболочек РЗ иона, по 4f включительно, на псевдопотенциал, и описание базисным набором только внешних 5s и 5p электронов позволяет хорошо описывать структуру, динамику, и упругие свойства решетки редкоземельных титанатов $R_2Ti_2O_7$.