Physics of Virus Self-Assembly and Virus-like Biological Nanostructures

V.L. Lorman

Laboratoire Charles Coulomb Département de Physique Théorique CNRS - Université de Montpellier, France

UNIVERSITÉ DE MONTPELLIER

Established in 1289 (Medical School since 1150)

In the frame of the Program "IPOLS - International Physics of Living Systems" -

NSF (USA) + CNRS & INSERM (France)

Laboratory of Excellence "NUMEV": Modeling for Life Sciences

3 health & biotechnology programs

- Struggle against emergent infectious diseases

- Controlled drug delivery

- Bio-inspired nanotechnology

Viruses, alive or not ?

All viruses require a host cell to replicate

Follow some basic pattern

- Deliver viral genomic material into host cell
- Subvert cell's biosynthetic machinery into producing new viral particles
- New virus particles self-assemble in the infected cell
- New virus particles leave infected cell to infect others

Lytic cycle

Virus structure

- Genomic material
 - DNA or RNA (both "+" and "-")
 - single- or double-stranded
 - linear or circular
 - one or several copies
- Capsid Protective protein shell
 - regular organization
 - high symmetry
 - made of many identical subunits
 - enveloped with lipid membrane or not
- Basic shape
 - helical rod-like
 - spherical
- Typical size
 - 30 ÷ 50 nm
 - nearly 1000 nm for some big ones

Exceptional shape viruses

O. Pornillos et al., Nature, 469, 424 (2010)

The capsid of HIV is a *conical* shell, with *continuously varying "lattice" curvature*,

Exceptional shape viruses

Filoviridae (Ebola virus)

Filamentous: compact and flexible . Mean diameter is about 80nm.

Exceptional size viruses

© CNRS Photothèque/URMITE/IRD 198 / RAOULT Didier, ESPINOSA Leon, CAMPANA Bernard

Giant Mamavirus infecting amoeba Mamavirus itself is infected by small Sputnik viruses

Virus structure

- Genomic material
 - DNA or RNA (both "+" and "-")
 - single- or double-stranded
 - linear or circular
 - one or several copies
- Capsid Protective protein shell
 - regular organization
 - high symmetry
 - made of many identical subunits
 - enveloped with lipid membrane or not
- Basic shape
 - helical rod-like
 - spherical
- Typical size
 - 30 ÷ 50 nm
 - nearly 1000 nm for some big ones

Virus Self-Assembly Process: Physicist's View

Procapsid Assembly from the Isotropic Solution Procapsid-to-Capsid Transformation during Maturation

Main control parameters: protein concentration, ionic force, pH-level

Genome packaging mechanisms

RNA Virus capsids assemble around their RNA genome. Flock House Virus with its RNA structured as a dodecahedral cage.

dsDNA bacteriophage, packages its genome into a pre-assembled capsid through a portal.

DNA packing in bacteriophages

DNA packing in bacteriophages

P22 phage Z. Zhang *et al.*, *J. Mol. Biol.* **297**, 615 (2000)

HK97 phage R.L. Duda *et al., J Mol Biol.* **391**, 471 (2009)

Nested shells of packaged DNA or compact structures akin to hexagonal lattice

Outwards pressure exerted by the DNA $\Delta P \approx$ up to 50 atm; enormous stock of elastic energy used then for genome injection.

Intracellular Viral Factories and DNA Packaging in Mimivirus

Zauberman N, Mutsafi Y, Halevy DB, Shimoni E, et al. (2008), PLoS Biol 6(5): e114

DNA ejection into infected bacteria

Drilling machine using commensurate shape transition

Courtesy P. Leiman, EPFL, Lausanne

Symmetry and Topology of Viral Capsids and their relation to the Self-Assembly

Main control parameters: protein concentration, ionic force, pH-level

Top-down approach in Condensed Matter Physics

Systems characterized by :

- regular organization
- high symmetry
- made of many identical subunits

Basic principles :

- relation between phenomenological thermodynamics and symmetry of the system
- order parameter notion, representations of symmetry groups
- reliable structural data

Simple systems :

- crystallization process (including molecular crystals)
- solid-solid phase transitions

More complex systems :

- ferroelectrics
- ferromagnetics
- superconductors
- liquid crystals

Structural Data

Symmetry of viral capsids make them uniquely well-suited to structural methods: X-Ray & CryoEM

⇒ Viruses are the largest aggregates of biological macromolecules whose structures have been determined at high resolution

T.S. Baker et al. *Microbiol. Mol. Biol. Reviews* **63**, 862 (1999)

Structural Data

Detailed Structural Data

Radial sections of virion density cryo-reconstructions and projection of the density on the sphere of maximal density

Available from cryoEM community

Detailed Structural Data

Ex.: Bovine Papilloma Virus

 \rightarrow

 \rightarrow

O.V. Konevtsova et al. Phys. Rev. Lett. 2012

- → *Quantitative* structure analysis
 - Physical models
 - Direct *comparison* with the data and predictions

F.H.C. Crick & J.D. Watson (1956), D.L.D. Caspar & A. Klug (1962) : Basic principles of virus structure

Key insight : Limited volume => Limited genome size => only few sorts of proteins of limited size *typically one protein for capsid formation*

Proteins are *"identical"* subunits in *"identical"* environments

=> First: irreducible 3D symmetry, then: *icosahedral* symmetry

Thermodynamics :

Self-Assembly is a *process akin to crystallization*

Different levels of Matter Organization and Energy Scale Separation Principle

Transition : isotropic solution of individual proteins \rightarrow unconventional 2D "crystal" with non-trivial spherical topology

I. Selection Rules for Positions of Protein Centers of Mass based on :

- Spherical Topology
- Asymmetry of individual proteins
- Global icosahedral symmetry of the Assembly

II. Relation Structure – Assembly Thermodynamics

Role of protein asymmetry

Moments of mass distribution. Simplest asymmetry property - chirality

Asymmetric Protein

Non-zero chirality of fixed sign ε_i ; $\sum_i \varepsilon_i \neq 0$: \rightarrow any distribution is also chiral

Rotational symmetry of an icosahedron *I* : *no inversion nor mirror planes*

Icosahedral Rotational Group I

Möbius Tessellation of a sphere by the action of Icosahedral Symmetry Elements with the fundamental domain of the Group *I* (called in Virology – "Asymmetric Protein Unit") Group G = I consists of 60 elements |G| = 60

Dimension of its regular orbit of the group action on point coordinates is also dim $[Orb_G] = 60$

Maximal dimension for Irreducible 3D rotational group

To compare with dim $[Orb_G] = 24$ for G = Ooctahedral rotational group and dim $[Orb_G] = 12$ for G = Ttetrahedral rotational group

Icosahedral Symmetry

- 12 vertices
- 20 faces (equilateral triangles)
- 5-3-2 symmetry axes
- 60 identical* subunits

 in identical environments
 can form icosahedral shell
 * asymmetric
 and not 120 as it could be for
 symmetric subunits

Maximal number of identical asymmetric proteins in a shell

To compare with 24 subunits in the octahedral shell, and 12 subunits in the tetrahedral shell cases, respectively.

Bigger Capsid shells

- Evolutionary pressure pushes to increase the genome size
- \Rightarrow to make larger capsid \Rightarrow to use *more protein subunits*
- *Not possible* to form icosahedral shell of identical subunits *in identical environments* with more than 60 subunits
- Viruses with more than 60 subunits were observed
- Questions :
 - How can more than 60 subunits form an icosahedral shell ?
 - Will any number of subunits work ?
 - If so, how would they be organized ?

Quasi-equivalence

D.L.D. Caspar & A. Klug, Cold Spring Harbor Symp. 27 (1962)

- Not all protein subunits are equivalent
 - "Nearly-identical subunits" in "slightly different environments"
- How to relate different environments ?
 ⇒ Simple geometrical scheme ⇒
 - pentamers at vertices
 - hexamers elsewhere
- Only certain number of subunits can form an icosahedral shell
 - \Rightarrow Selection rules :

- only N = 60 T, with $T = h^2 + hk + k^2$ with h, k = 1, 2, 3, ... can work

© D. Gossard, MIT

Geometrical model of Quasi-equivalence

D.L.D. Caspar & A. Klug, Cold Spring Harbor Symp. 27 (1962)

FIGURE 6. Asymmetric units arrayed in an equilateral-triangular plane not. Besides having translations, here a and a, the lattice has 6-fold rotational axes of symmetry. Although the asymmetric units are in 6 different orientations in space, they are all exactly equivalently related.

Each unit here is equipped with five "bond" sites, A, B, C, D, and E, forming three different "bonds", namely a hoxamer bond AE, a trimer bond BC, and a dimer bond DD. (Note that only two of these bonds are absolutely essential for coherence of the array.)

Asymmetric proteins in general positions in the hexagonal unit cell (regular orbit of the 2D space group)

Protein environments are equivalent due to the lattice translation

Geometrical model of Quasi-equivalence

Net of an Icosahedron is **commensurate** with the hexagonal lattice Local order is hexagonal

Folded Icosahedron

Mapping of the Hexagonal Lattice to the Surface of an Icosahedron ("slitting the net and folding")

Geometrical model of Quasi-equivalence

Conventional and Unconventional Capsid Structures

Conventional « spherical » viral capsids exhibit spatial organization consistent with the Caspar & Klug selection rules

Cowpea Chlorotic Mottle Virus (CCMV) T = 3

Hepatitis B Virus (HBV) T = 4

However, unconventional capsid structures don't

L-A Virus T = 2 *forbidden by* Caspar-Klug *selection rules*

Dengue Virus T = 3 but *without* Caspar-Klug *hexamers*

Looking for other ideas : Is it possible to propose common selection rules ?

Basic Ideas from Statistical Condensed Matter Physics

One type of proteins \rightarrow One statistical *density distribution function*

Physical equivalence \rightarrow Proteins located in a system of maxima of a *single irreducible* density function

Assembly thermodynamics \rightarrow Free energy invariant wrt the density function

Simple analogs : Atomic solids

Physical equivalence in a simple system \rightarrow Atoms in atomic crystals (lattice nodes)

Physical equivalence in a more comlex system

Thermodynamics

- \rightarrow Atoms in atomic quasicrystals
- \rightarrow Crystallization theory : Density waves

Landau Theory of Crystallization : Static Density Waves

 $\rho = \rho_0 + \Delta \rho$ Density in the crystal state Classical crystal case: $\Delta \rho = \sum_{k} \rho_{k} \exp(i\mathbf{k}\mathbf{r})$ *Density* deviation from its value ρ_{0} in the isotropic state = = System of Plane Waves with the fixed length of wave vectors $|\mathbf{k}|$

Critical System of Density Waves $\Delta \rho = \sum_{ki} \rho_{ki} \exp(ik_i r)$ where ρ_{ki} are Order Parameter Components

For crystals formed by one type of atoms the atomic positions are associated with the maxima of the Critical System of Density Waves (CSDW)

Quasicrystals:

Small finite number of different environments generated by a single irreducible density function

Per Bak, Phys. Rev. Lett. 54, 1517 (1985)

S.B. Rochal et al., Phys. Rev. B. 72, 024210 (2005)

Landau Theory of Crystallization : Static Density Waves

Free energy expansion near the isotropic-to-crystal phase transition : $F_0 + F_2 + F_3 + F_4 + \dots$

 $F_2 = \int d^2k A_k \rho_k \rho_{-k} = A(T, c) |\rho_k|^2; \quad F_3 = B(T, c) \sum_{k1, k2, k3} \rho_{k1} \rho_{k2} \rho_{k3} \delta(k_1 + k_2 + k_3)$

 $F_4 = C(T, c) \sum_{k1, k2, k3, k4} \rho_{k1} \rho_{k2} \rho_{k3} \rho_{k4} \delta(k_1 + k_2 + k_3 + k_4)$

S. Alexander & J. McTague, Phys. Rev. Lett. **41**, 702 (1978)

Currently : In P. Chaikin & T. Lubensky Textbook « Principles of Condensed Matter Physics » Contributions to the Cubic Term in the Free Energy – Choice of the thermodynamically favorable state

Assembly of protein shells : Spherical Density Waves

 $\rho = \rho_0 + \Delta \rho$ Density in the self-assembled state 2D spherical distribution of finite asymmetric units in 3D space: $\Delta \rho = \sum_{l \in \mathbb{N}} \sum_{|m| \leq l} \rho_{lm} Y_m^l (\Theta, \phi)$ *Density* deviation from its value ρ_0 in the isotropic state = = *System of Waves on a Sphere with the fixed wave number l*

Asymmetric Proteins have no Proper Symmetry. Because of the Asymmetry the final structure has *neither spatial inversion nor symmetry plane* elements => *only odd spherical harmonics* in $\Delta \rho$

Restrictions on the free energy form:

Free energy density expansion near the assembly transition : $F_0 + F_2 + F_3 + F_4 + ...$

 $F_2 = A(T, c) \sum_m a_m \rho_{lm} \rho_{l(-m)}$

 $F_3 = B(T, c) \sum_{m_{1, m_{2, m_{3}}} a_{m_{1, m_{2, m_{3}}}} \rho_{lm_1} \rho_{lm_2} \rho_{lm_3} \delta(m_1 + m_2 + m_3) \equiv 0 \qquad (!!!)$

 $F_4 = \sum_{k} C_k(T, c) \sum_{m1, m2, m3, m4} a_{m1, m2, m3, m4} \rho_{lm1} \rho_{lm2} \rho_{lm3} \rho_{lm4} \delta(m_1 + m_2 + m_3 + m_4)$

Possibility of 2^{nd} order transition \rightarrow specific kinetics

Assembly of protein shells : Spherical Density Waves

- **No coexistence of two states** \rightarrow Rare intermediate products of assembly **Slow dynamics** \rightarrow
 - \rightarrow No one-by-one steps
- \rightarrow No polymerization-like assembly process

Experiment:

- no incomplete capsids, either isolated proteins in solution,

or fully assembled shell;

- very slow dynamics called "protein sitting"

"Structural" selection rules

What is proposed instead of Caspar-Klug selection rules for T number ?

→ Symmetry restriction on the choice of density functions :

Density function invariant with respect to the rotational icosahedral symmetry group *I* can be constructed *not for all odd l* but only for l = 15 + 6i + 10j; i, j = 0, 1, 2, 3, ...

Protein distribution in capsids of small viruses \rightarrow icosahedral density waves with l = 15, l = 21, l = 25, l = 27, l = 31, etc.

→ Restriction on possible protein positions
 However, no limitation of the Caspar-Klug type : all integer T are possible

Number of different types of maxima = Number T of protein environments

for a **small viruses** (with l < 44): Icosahedral density functions $\Delta \rho_{l}(\Theta, \phi) = \sum_{|m| \le l} \rho_{lm} Y^{l}_{m}(\Theta, \phi) = B f_{l}(\Theta, \phi)$

are unique functions without fitting parameters

 \rightarrow

Selection rules

Critical System of Density Waves (CSDW) in the considered case :

 $\Delta \rho_{cr} = B f_l(\Theta, \phi) = \sum_{|m| \le l} \rho_{lm} Y^l_m(\Theta, \phi)$

where ρ_{lm} span active irreducible representation (IR) of the symmetry group G_0 of the parent state. «Active IR drives the transition ».

Active IR of G_0 must subduce the identity representation of the symmetry group G of the ordered state (G \subset G₀).

B $f_l(\Theta, \phi) = \sum_{|m| \le l} \rho_{lm} Y^l_m(\Theta, \phi)$ must span the identity representation of G.

The representation subduced from G_0 to G must contain the identity representation of G.

Frequency of subduction: $n_l = (1//G/) \sum_G \chi(g)$

 $\chi(g)$ is the character of the G₀ = SO(3) group element g; the sum runs over the elements g∈G of the icosahedron rotation group *I*; |G|=60 is the *I* group order

Subduction Criterion: $\mathbf{n}_l \neq \mathbf{0}$ or $\mathbf{n}_l = \mathbf{0} \rightarrow \mathbf{selection rules for } l$:

Selection rules

Constructive form

Frequency of subduction: $n_l = (1/|G|) \sum_G \chi(g)$ $\chi(g)$ is the character of the element $g \in SO(3)$: $\chi(l, \alpha) = \frac{\sin[(l+1/2)\alpha]}{\sin(\alpha/2)}$

Conjugacy classes of the *I* group:

Identity E
15 rotations C₂, order 2
20 rotations C₃, order 3
12 rotations C₅, order 5
12 rotations (C₅)², order 5

 $n(l) = (1/60) \left[2l + 1 + 15\chi(l,\pi) + 20\chi(l,2\pi/3) + 12\chi(l,2\pi/5) + 12\chi(l,4\pi/5) \right]$

 $n_l \neq 0$ for l = 15 + 6i + 10j; i, j = 0, 1, 2, 3, ...

Selection rules and groups not generated by reflections

CSDW B $f_l(\Theta, \phi)$ are homogeneous functions of degree l

Any scalar function invariant wrt *I* group : $F(g \vec{r}) = F(\vec{r})$ $g \in I$, $\vec{r} = (x,y,z)$ can be expanded in formal series $F(J_0, J_1, J_2, J_3)$

 $\{J_i\}$ is the integrity basis –

full set of generators of the ring of polynomials invariant wrt *I* group: $J_0 = x^2 + y^2 + z^2 \qquad J_1 = \prod_{i=1}^6 \vec{n}_i \vec{r} \qquad J_2 = \prod_{i=1}^{10} \vec{p}_i \vec{r} \qquad J_3 = \prod_{i=1}^{15} \vec{q}_i \vec{r}$

I group is not generated by reflections \rightarrow (J₀, J₁, J₂, J₃) form syzygy an algebraic relation of the form (J₃)² = P (J₀, J₁, J₂) in 30th degree

→ Invariant homogeneous functions of degree *l*

$$G_{l}(x,y,z) = J_{3}\left[\sum_{15+2k+6i+10j=l} A_{k,i,j} (J_{0})^{k} (J_{1})^{i} (J_{2})^{j}\right]$$
on a sphere $J_{0} = \text{Const}$

$$J_{3}\left[A_{0,0} + A_{1,0}J_{1} + A_{0,1}J_{2} + A_{2,0}(J_{1})^{2} + A_{1,1}J_{1}J_{2} + \ldots + \sum_{15+6i+10j=l} A_{i,j} (J_{1})^{i} (J_{2})^{j}\right]$$
→ $l = 15 + 6i + 10j$;
i, $j = 0, 1, 2, 3, \ldots$
VL.Lorman & S.B. Rochal, Springer Lect. Notes, 11 (2015) Group theory methods in virology

Irreducible icosahedral density functions

The explicit form is obtained by averaging of $Y_m^l(\Theta, \phi)$ over the *I* symmetry group $\Delta \rho_l(\Theta, \phi) \propto f_l(\Theta, \phi) = (1/60) \sum_G Y_m^l(\Theta, \phi)$

Protein density distribution with the minimal possible wave number : l = 15

60 equivalent density maxima in equivalent environments

T=1 capsids

V.L. Lorman & S.B. Rochal , Phys. Rev. Lett., (2007), Phys. Rev. B (2008), Phys. Rev. E (2009), Phys.Rev. Lett. (2012)

Research Highlights : Nature Nanotechnology

Classification of protein density functions

Density functions for several small icosahedral viruses

a) l = 15; T = 1 (Caspar-Klug structure)

b) l = 21; T = 2 (non Caspar-Klug structure)

c) l = 25; T = 3 (non Caspar-Klug structure)

d)
$$l = 27$$
; T = 3 (Caspar-Klug structure)

e) l = 31; T = 4 (Caspar-Klug structure)

f) l = 37; T = 6 (non Caspar-Klug structure)

Viruses can have the **same T** number but **qualitatively different organization** (see c and d)

Figure 1

Predicted protein distributions and viral structures

Examples of viruses which satisfy Caspar-Klug rules

- a) $l = 15; T = 1 \rightarrow$ Satellite Tobacco Necrosis Virus
- b) 1 = 27; T = 3 \rightarrow Cowpea Chlorotic Mottle Virus
- c) $l = 31; T = 4 \rightarrow$ Semliki Forest Virus

Small finite number of different environments generated by a single irreducible density function

Predicted protein distributions and viral structures

Figure 3

Examples of viruses which do not satisfy Caspar-Klug rules

a)
$$l = 21$$
; $T = 2 \rightarrow L$ -A Virus
 $T \neq h^2 + hk + k^2$

b) 1 = 25; $T = 3 \rightarrow$ Dengue Virus no hexamers

c) l = 37; $T = 6 \rightarrow$ Murine Polyoma Virus $T \neq h^2 + hk + k^2$

Dengue Virus Capsid

T=3 environments; N= 180 proteins **Typical rhombic motif without hexamers**

Icosahedral density distribution function with l=25

Capsid "breathing" effect K.A. Dowd, et al., J. Virol **88**, 11726 (2014), NIH & Purdue teams

Infectivity and structure

Cell receptor carbohydrate recognition domains are bound to the **Dengue Virus** in the *deepest minima* of the icosahedral density distribution function with 1 = 25, *near its highest maxima*

\Rightarrow Relation with binding probability

Cell receptor domains bound to the **Dengue Virus** surface

E. Pokidysheva et al. , Cell **124**, 485 (2006)M. Rossmann's group, Purdue University

Infectivity and structure

ICAM-1 receptor domains are bound to the Human Rhinovirus Virus in the deepest minima of the icosahedral density distribution function with l = 33 forming narrow "canyons"

=> Relation with binding probability

Human Rhinovirus with the fragment of its cellular receptor ICAM-1 (intracellular adhesion molecule -1) ICAM-1 binds to the HRV « canyon »

Infectivity and structure

Intermediate Summary

• Asymmetric protein assembly in capsids of small icosahedral viruses :

- Generalization of the Caspar & Klug theory of quasi-equivalence
- Generalization of the Landau theory of crystallization
- Selection rules and method for protein density distribution function construction
 - Rules for protein distribution beyond the Caspar & Klug scheme
 - Relation between protein density distribution and binding probability

in the same frame :

- Protein rearrangement across reversible procapsid-capsid transitions during maturation in certain viruses
- Capsid polymorphism in viruses, mutants and virus-like particles

 Different icosahedral shells formed by the same protein: Relevant density-wave parameters
- Non-icosahedral shells. Vault virus-like nanoparticles

Fundamental quantity conserved across the transition : Average wave vector of the density wave

Plane waves approximating density waves on a sphere : average wave vector q = l/Rrelated to a typical protein size

Dengue Virus

Strong size variation : Rprocapsid / Rcapsid $\approx 13\%$ but (l/R) procapsid $\approx (l/R)$ capsid

l = 27; 2R = 59 nm l = 25; 2R = 53 nm

Approximating plane wave : $\Delta \rho \sim \exp(i\mathbf{qr})$

To compare with the SAXS on the isotropic protein solution before the assembly. Protein "atomic factor".

Capsid polymorphism : Same proteins forming different capsids (with different number of environments) :

Example: mutant Cowpea Chlorotic Mottle Virus (CCMV)

J.H. Tang et al., J. Struct. Biol. **154**, 59 (2006)

Mutant Capsid Proteins lacking most of the N-terminal domain, ND34

Blue, red, and green circles show the three different types of particles corresponding to the T = 1, T = 2, and T = 3 capsids, respectively.

Capsid type is "flexible" and may readily adapt to new requirements as the virus evolves

Virus-Like Particles using Capsid polymorphism

J. Sun et al., PNAS 104, 1354 (2007)

Core = gold nanoparticle functionalized with the carboxylated PEG; Coat = BMV Capsid Proteins Three different (but \approx appropriate) nanoparticle sizes \rightarrow Three different VLP with coats \approx T = 1; T = 2, and T = 3

Drug delivery optimization

In collaboration with :

- O. Konevtsova & S. B. Rochal, Southern Federal University, Russia
- Ya. Beltukov, Charles Coulomb Lab, Montpellier, France
- & Ioffe Institute, St. Petersburg, Russia

Acknowledgements :

- P. Leiman, EPFL, Lausanne, Switzerland
- A. Kajava, Centre de Recherche de Biochimie Macromoléculaire CNRS, Montpellier
- F. Livolant, Laboratoire de Physique des Solides CNRS Université Paris XI Sud
- R. Podgornik, U. Ljubljana, Slovenia & U. Massachusetts, U.S.A.
- A.C. Steven, NIH, Bethesda, U.S.A.
- J. Prost, Institut Curie, Paris, France

