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Viruses, alive or not ? 

All viruses require a host cell to replicate 

Follow some basic pattern 

- Deliver viral genomic material into host cell 

- Subvert cell’s biosynthetic machinery into  

producing new viral particles 

- New virus particles self-assemble  

in the infected cell 

- New virus particles leave infected cell  

to infect others 

Lytic cycle 



Virus structure 

   Genomic material 

        - DNA or RNA (both “+” and “-”) 

        - single- or double-stranded 

        - linear or circular 

        - one or several copies 

 

   Capsid – Protective protein shell 

        - regular organization 

        - high symmetry 

        - made of many identical subunits 

        - enveloped with lipid membrane 

          or not 

 

   Basic shape 

        - helical rod-like 

        - spherical 

 

   Typical size 

        - 30  50 nm  

        -  nearly 1000 nm for some big ones 



The capsid of HIV is a conical shell, with continuously varying “lattice” curvature,  

Exceptional shape viruses 

O. Pornillos et al., Nature, 469, 424 (2010) 



Filoviridae ( Ebola virus) 

Filamentous: compact and flexible . Mean diameter is about 80nm. 

Exceptional shape viruses 



Exceptional size viruses 

Giant Mamavirus infecting amoeba  

Mamavirus itself is infected by small Sputnik viruses 
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Virus Self-Assembly Process: Physicist’s View 

A.C. Steven et al., Curr. Opinion Struct. Biol. 15, 227 (2005) 

Procapsid Assembly 

from the Isotropic Solution 

Procapsid-to-Capsid 

Transformation during Maturation 

Main control parameters: protein concentration, ionic force, pH-level 



RNA Virus capsids assemble around their RNA genome.  

Flock House Virus with its RNA structured as a dodecahedral cage. 

 

dsDNA bacteriophage, packages its genome into a pre-assembled capsid through a portal.  

Genome packaging mechanisms 



DNA packing in bacteriophages 



Nested shells of packaged DNA or compact structures akin to hexagonal lattice 

 

Outwards pressure exerted by the DNA DP  up to 50 atm; enormous stock of 

elastic energy used then for genome injection. 

HK97 phage 
R.L. Duda et al., J Mol Biol. 391, 471 (2009) 

P22 phage 
Z. Zhang et al., J. Mol. Biol. 297, 615 (2000)  

DNA packing in bacteriophages 



Intracellular Viral Factories and DNA Packaging in Mimivirus 

Zauberman N, Mutsafi Y, Halevy DB, Shimoni E, et al. (2008), PLoS Biol 6(5): e114 



DNA ejection into infected bacteria 



Drilling machine using commensurate shape transition  

Courtesy  P. Leiman, EPFL, Lausanne 



A.C. Steven et al., Curr. Opinion Struct. Biol. 15, 227 (2005) 

Symmetry and Topology of Viral Capsids 

 and their relation to the Self-Assembly  

Procapsid Assembly 

from the Isotropic Solution 

Procapsid-to-Capsid 

Transformation = Maturation 

Main control parameters: protein concentration, ionic force, pH-level 



Systems characterized by : 

        - regular organization 

        - high symmetry 

        - made of many identical subunits 

 

Basic principles : 

        - relation between phenomenological thermodynamics and symmetry of the 

          system 

        - order parameter notion, representations of symmetry groups 

        - reliable structural data 

 

Simple systems : 

        - crystallization process (including molecular crystals) 

        - solid-solid phase transitions  

 

More complex systems : 

        - ferroelectrics 

        - ferromagnetics 

        - superconductors 

        - liquid crystals  

Top-down approach in Condensed Matter Physics 



Symmetry of viral capsids make them uniquely well-suited to 

structural methods: X-Ray & CryoEM 

 

 Viruses are the largest aggregates of biological 

macromolecules whose structures have been determined 

at high resolution 

 

Structural Data  

T.S. Baker et al.  

Microbiol. Mol. Biol. Reviews 63, 862 (1999) 



Structural Data  



Detailed Structural Data  

Radial sections of virion density cryo-reconstructions and  

projection of the density on the sphere of maximal density 

 

Available from cryoEM community  

Ex.: Dengue Virus 



 Quantitative structure analysis 

 

 Physical models 

 

 Direct comparison with the data 

 and predictions 

Detailed Structural Data  

Ex.: Bovine Papilloma Virus O.V. Konevtsova et al.  

Phys. Rev. Lett. 2012 



Basics : How it started 

F.H.C. Crick & J.D. Watson (1956), D.L.D. Caspar & A. Klug (1962) : 

Basic principles of virus structure 

 

     Key insight :   Limited volume     =>     Limited genome size 

  =>  only  few sorts  of proteins of limited size  

  typically one protein for capsid formation 

  

 

 

     Proteins are “identical” subunits in “identical” environments 

 

   => First: irreducible 3D symmetry, then: icosahedral symmetry 

 

  

     Thermodynamics : 

 

       Self-Assembly is a process akin to crystallization 



Different levels of Matter Organization and Energy Scale Separation Principle 

 

Transition : isotropic solution of individual proteins   unconventional 2D “crystal" 

with non-trivial spherical topology 

Energy of a Covalent 

Bond 
Energy of a Protein 

Conformation 

Energy of a Phase 

Transition 





Asymmetric Protein 

Rotational symmetry of an icosahedron I : no inversion nor mirror planes 

Non-zero chirality of fixed sign ε i  ; 

 i  ε i  ≠  0:  

  any distribution is also chiral 

Role of protein asymmetry 

Moments of mass distribution. Simplest asymmetry property - chirality 



Icosahedral Rotational Group I 

Group  G = I consists of 60 elements 

|G| = 60 

 

Dimension of its regular orbit of the 

group action on point coordinates is 

also dim [OrbG] = 60 

 

Maximal dimension for Irreducible 

3D rotational group 

 

To compare with  

dim [OrbG] = 24 for G = O 

octahedral rotational group 

and  

dim [OrbG] = 12 for G = T 

tetrahedral rotational group 

 

Möbius Tessellation of a sphere by the action of 

Icosahedral Symmetry Elements 

with the fundamental domain of the Group I  

(called in Virology – “Asymmetric Protein Unit”) 



© D. Gossard, MIT 

Maximal number of identical asymmetric proteins in a shell 

To compare with 24 subunits in the octahedral shell, and 12 subunits in the  

tetrahedral shell cases, respectively. 

and not 120 as it could be for 

symmetric subunits 



Bigger Capsid shells  

• Evolutionary pressure pushes to increase the genome size 

   to make larger capsid      to use more protein subunits 

 

• Not possible to form icosahedral shell of identical subunits  

 in identical environments  with more than 60 subunits 

 

• Viruses with more than 60 subunits were observed 

 

• Questions : 

 

 - How can more than 60 subunits form an icosahedral shell ? 

 

 - Will any number of subunits work ? 

 

 - If so, how would they be organized ? 



Quasi-equivalence  

• Not all protein subunits are equivalent  

 

 -  “Nearly-identical subunits” in 

“slightly different environments” 

 

• How to relate different environments ?  

   Simple geometrical scheme   

  -  pentamers at vertices 

  -  hexamers elsewhere 

 

• Only certain number of subunits can 

form an icosahedral shell 

   Selection rules : 

 -  only N = 60 T, with T = h2 + hk + k2 

 with h, k = 1, 2, 3, …  can work 

D.L.D. Caspar & A. Klug, Cold Spring Harbor Symp. 27 (1962) 

T = 1  

(h,k) = (1,0) 

T = 4  

(h,k) = (2,0) © D. Gossard, MIT 



Geometrical model of Quasi-equivalence  

D.L.D. Caspar & A. Klug, Cold Spring Harbor Symp. 27 (1962) 

Asymmetric proteins in general positions in the hexagonal unit cell 

(regular orbit of the 2D space group)  

 

Protein environments are equivalent due to the lattice translation 



Net of an Icosahedron is commensurate  

with the hexagonal lattice   

Local order is hexagonal 

Folded Icosahedron 

Geometrical model of Quasi-equivalence  

Mapping of the Hexagonal Lattice to the Surface of  an Icosahedron 

(“slitting the net and folding”) 



Selection rules :  

 

Number T of different 

environments  = 

Triangulation Number 

T = h2 + hk + k2 

 

 

But 

 

 

Not unique 

+ 

No relation with  

assembly thermodynamics 

 

Geometrical model of Quasi-equivalence  



Conventional « spherical » viral capsids exhibit spatial organization 

consistent with the Caspar & Klug selection rules 

Conventional and Unconventional Capsid Structures 

Cowpea Chlorotic  

Mottle Virus (CCMV) 

T = 3 

Hepatitis B Virus  

(HBV) 

T = 4 

However, unconventional  capsid structures don’t 

L-A Virus 

T = 2 

forbidden by  

Caspar-Klug 

selection rules 

Dengue Virus 

T = 3  

but without  

Caspar-Klug 

hexamers 

Looking for other ideas :     Is it possible to propose common selection rules ? 



One type of proteins       One statistical density distribution function 

 

Physical equivalence      Proteins located in a system of maxima 

                of a single irreducible density function 

 

Assembly thermodynamics      Free energy invariant wrt the density function 

 

Basic Ideas from Statistical Condensed Matter Physics  

Physical equivalence        Atoms in atomic crystals (lattice nodes) 

in a simple system 

 

Physical equivalence       Atoms in atomic quasicrystals 

in a more comlex system 

 

Thermodynamics       Crystallization theory : Density waves 

Simple analogs :    Atomic solids 



Landau Theory of Crystallization : Static Density Waves 

r = r 0 + D r 
Density in the 

crystal state 

Classical crystal case:  D r = k rk exp(ikr)  

Density deviation from its value r 0 in the isotropic state  = 

=  System of Plane Waves with the fixed length of wave vectors |k| 

For crystals formed by one type of atoms the atomic positions are associated 

with the maxima of the Critical System of Density Waves (CSDW) 

Critical System of Density Waves D r = ki rki exp(ikir) 

where rki are Order Parameter Components 

Quasicrystals: 

 

Small finite number of different environments  

generated by a single irreducible density function 

Per Bak, Phys. Rev. Lett. 54, 1517 (1985) 

S.B. Rochal et al. , Phys. Rev. B. 72, 024210 (2005) 



Free energy expansion near the isotropic-to-crystal phase transition : F0 + F2 + F3 + F4 + … 

 

F2 =  d2k Ak rk r-k = A(T, c)  rk 2 ;     F3 = B(T, c) k1, k2, k3 rk1 rk2 rk3 d(k1 + k2 + k3 ) 

 

F4 = C(T, c) k1, k2, k3, k4 rk1 rk2 rk3 rk4 d(k1 + k2 + k3 + k4 ) 

Contributions to the Cubic Term in  

the Free Energy – Choice of the 

thermodynamically favorable state 

S. Alexander & J. McTague,  

Phys. Rev. Lett. 41, 702 (1978) 

 

Currently : 

In P. Chaikin & T. Lubensky Textbook 

« Principles of Condensed Matter Physics » 

F 

rk 

B.C.C. Lattice 2D Hexagonal Lattice 

Landau Theory of Crystallization : Static Density Waves 



Asymmetric Proteins have no Proper Symmetry. Because of the Asymmetry the final structure has 

neither spatial inversion nor symmetry plane elements  =>  only odd spherical harmonics in D r  

r = r 0 + D r 
Density in the 

self-assembled 

state 

2D spherical distribution of finite asymmetric units in 3D space:  

D r = lN   m  l rlm Y
l
m (Q, f) 

Density deviation from its value r 0 in the isotropic state  = 

=  System of Waves on a Sphere with the fixed wave number l 

Restrictions on the free energy form: 

 

Free energy density expansion near the assembly transition : F0 + F2 + F3 + F4 + … 

 

F2 = A(T, c)  m a m rlm rl(-m) 

 

F3 = B(T, c) m1, m2, m3 a m1, m2, m3 rlm1 rlm2 rlm3 d(m1 + m2 + m3 )         0        (!!!) 

 

F4 =  k C k(T, c)  m1, m2, m3, m4 a m1, m2, m3, m4 rlm1 rlm2 rlm3 rlm4 d(m1 + m2 + m3 + m4 )  

 

Possibility of  2nd order transition       specific  kinetics 

 

Assembly of protein shells : Spherical Density Waves 



 

Isotropic solution Assembled procapsid shell 

 

No coexistence of two states     Rare intermediate products of assembly 

       Slow dynamics 

 

     No one-by-one steps       No polymerization-like assembly process 

 

Experiment:  

- no incomplete capsids,  either  isolated proteins in solution, 

or fully assembled shell; 

- very slow dynamics called “protein sitting” 

 

F 

rlm 

F 

rlm 

Assembly of protein shells : Spherical Density Waves 



 What is proposed instead of Caspar-Klug selection rules for T number ? 

 

    Symmetry restriction on the choice of density functions : 

 

 Density function invariant with respect to the rotational icosahedral symmetry   

 group I  can be constructed    not for all odd l 

   but only for          l = 15 + 6i + 10j ;           i, j = 0, 1, 2, 3, …  

 

 Protein distribution in capsids of small viruses        icosahedral density waves with 

 l = 15, l = 21, l = 25, l = 27, l = 31, etc. 

 

    Restriction on possible protein positions 

 However , no limitation of the Caspar-Klug type : all integer T are possible  

 

 Number of different types of maxima =  Number T of protein environments  

 

     for a small viruses (with l < 44):   Icosahedral density functions  

 D rl(Q, f) =   m  l rlm Y
l
m (Q, f) = B fl(Q, f) 

  

 are unique functions without fitting parameters 

“Structural” selection rules 



Selection rules 

Critical System of Density Waves (CSDW)  in the considered case :  

D rcr = B fl (Q, f) =   m  l rlm Y
l
m (Q, f)  

where rlm span active irreducible representation (IR) of the symmetry group G0  

of the parent state.  « Active IR drives the transition ». 

 

Active IR of  G0 must subduce the identity representation of the symmetry group G of the 

ordered state (G ⊂ G0).  

 

B fl (Q, f) =   m  l rlm Y
l
m (Q, f)  must span the identity representation of G.  

 

The representation subduced from G0 to G must contain the identity representation of G. 

Frequency of subduction: nl = (1/|G|) G χ(g) 

  

  χ(g) is the character of the G0 = SO(3) group element g;  

 the sum runs over the elements g∈G of the icosahedron rotation group I ;  

    |G|=60 is the I group order 

 

Subduction Criterion:    nl  0  or  nl = 0        selection rules for l:   



Selection rules 

 
Constructive form 

Frequency of subduction: nl = (1/|G|) G χ(g) 

  

χ(g) is the character of the element g  SO(3) :  
 
Conjugacy classes of the I group: 

    - Identity E 

    - 15 rotations C2, order 2 

    - 20 rotations C3, order 3 

    - 12 rotations C5, order 5 

    - 12 rotations (C5)
2, order 5 

χ 𝑙, α =
sin 𝑙 + 1/2 α

sin α/2
 

n(l)= (1/60) [2l +1 + 15χ 𝑙, 𝜋  + 20 χ 𝑙, 2𝜋/3  + 12 χ 𝑙, 2𝜋/5  + 12 χ 𝑙, 4𝜋/5 ] 

nl  0  for       l = 15 + 6i + 10j ;           i, j = 0, 1, 2, 3, …  



B fl (Q, f) = J3[ A0,0 + A1,0J1 + A0,1J2 + A2,0(J1)
2 + A1,1J1J2 + … +  15 + 6i + 10j = l  Ai,j (J1)

i (J2)
j ]  

Gl (x,y,z) = J3[  15 + 2k + 6i + 10j = l  Ak,i,j (J0)
k (J1)

i ( J2)
j ]  

J1 =  𝑛𝑖 𝑟 
6
𝑖=1  J2 =  𝑝 𝑖 𝑟 

10
𝑖=1  J3 =  𝑞 𝑖 𝑟 

15
𝑖=1  J0 = x2 + y2 + z2 

CSDW   B fl (Q, f) are homogeneous functions of degree l  

 

Any scalar function invariant wrt I group : F(g 𝑟 ) = F(𝑟 )   g  I , 𝑟  = (x,y,z) 

can be expanded in formal series F (J0, J1, J2, J3)  

{Ji} is the integrity basis – 

full set of generators of the ring of polynomials invariant wrt I group: 

 

 I group is not generated by reflections    (J0, J1, J2, J3) form syzygy - 

an algebraic relation of the form (J3)
2 = P (J0, J1, J2)  in 30th degree 

 

    Invariant homogeneous functions of degree l  

 

Selection rules and groups not generated by reflections 

on a sphere J0 = Const     

   l = 15 + 6i + 10j ;           i, j = 0, 1, 2, 3, … V.L.Lorman & S.B. Rochal, 

Springer Lect. Notes, 11 (2015) 

Group theory methods in virology 



The  explicit form is obtained by averaging of  Yl
m (Q, f) over the I symmetry group 

  D rl(Q, f)  fl(Q, f) = (1/60) G Yl
m (Q, f) 

Irreducible icosahedral density functions 

Protein density distribution with 

the minimal possible wave 

number : 

  l = 15 

 

60 equivalent density maxima in 

equivalent environments 

 

              T=1 capsids 

V.L. Lorman & S.B. Rochal , Phys. Rev. Lett., (2007), 

Phys. Rev. B (2008), Phys. Rev. E (2009), Phys.Rev. Lett.  (2012) 

 

Research Highlights : Nature Nanotechnology 



Density functions for several small icosahedral 

viruses 
 

a) l = 15; T = 1 (Caspar-Klug structure) 

 

b) l = 21; T = 2 (non Caspar-Klug structure) 

 

c) l = 25; T = 3 (non Caspar-Klug structure) 

 

d) l = 27; T = 3 (Caspar-Klug structure) 

 

e) l = 31; T = 4 (Caspar-Klug structure) 

 

f) l = 37; T = 6 (non Caspar-Klug structure) 

 

 

 

Viruses can have the same T number but  

qualitatively different organization (see c and d) 

Classification of protein density functions 



Examples of viruses which satisfy  

Caspar-Klug rules 

 
a) l = 15; T = 1   Satellite Tobacco Necrosis 

  Virus 

 

b) l = 27; T = 3  Cowpea Chlorotic Mottle 

  Virus 

 

c) l = 31; T = 4   Semliki Forest Virus 

Predicted protein distributions and viral structures 

Small finite number of different environments 

generated by a single irreducible density 

function 



Predicted protein distributions and viral structures 

Examples of viruses which do not  

satisfy Caspar-Klug rules 

 

a) l = 21; T = 2   L-A Virus 

  T  h2 + hk + k2 

 

 

b) l = 25; T = 3  Dengue Virus 

  no hexamers 

 

 

 

c) l = 37; T = 6   Murine Polyoma Virus 

  T  h2 + hk + k2 



Dengue Virus Capsid 

T=3 environments; N= 180 proteins 

Typical rhombic motif without hexamers 

 

Icosahedral density distribution function with l=25 

 

Capsid “breathing” effect 
K.A. Dowd, et al., J. Virol 88, 11726 (2014), NIH & Purdue teams 



Cell receptor carbohydrate recognition domains 

are bound to the Dengue Virus in the deepest 

minima of the icosahedral density distribution 

function with l = 25, near its highest maxima 

 

 Relation with binding probability 

Infectivity and structure 

E. Pokidysheva et al. , Cell 124, 485 (2006) 

M. Rossmann’s group, Purdue University 

Cell receptor domains bound to the Dengue 

Virus surface 



ICAM-1 receptor domains are bound to the 

Human Rhinovirus Virus in the deepest minima 

of the icosahedral density distribution function 

with l = 33 forming narrow “canyons” 

 

=> Relation with binding probability 

Infectivity and structure 

Human Rhinovirus with the fragment of 

its cellular receptor ICAM-1 (intracellular 

adhesion molecule – 1) 

ICAM-1 binds to the HRV « canyon » 

“canyons” 



ICAM-1 binds to the  
HRV « canyon » too  
narrow for antibodies 

“canyons” 

Infectivity and structure 

M. Rossmann 



• Asymmetric protein assembly in capsids of small icosahedral viruses : 

 - Generalization of the Caspar & Klug theory of quasi-equivalence 

  - Generalization of the Landau theory of crystallization 

 

• Selection rules and method for protein density distribution function construction 

 - Rules for protein distribution beyond the Caspar & Klug scheme 

 - Relation between protein density distribution and binding probability 

 

  in the same frame : 

 

• Protein rearrangement across reversible procapsid-capsid transitions      

   during maturation in certain viruses 

 

• Capsid polymorphism in viruses, mutants and virus-like particles 

 - Different icosahedral shells formed by the same protein:  

   Relevant density-wave parameters  

 

• Non-icosahedral shells. Vault virus-like nanoparticles 

 

 

Intermediate Summary 



Fundamental quantity conserved across the transition : 

Average wave vector of the density wave 

Dengue Virus 

 

Strong size variation : Rprocapsid / Rcapsid  13% 

but (l /R)procapsid  (l /R)capsid  

Plane waves approximating density waves on a sphere : average wave vector q = l/R 

related to a typical protein size 

l = 27; 2R = 59 nm l = 25; 2R = 53 nm q = l/R 

Approximating plane wave : D r ~ exp(iqr) 

 

To compare with the SAXS on the isotropic 

protein solution before the assembly. Protein 

“atomic factor”.  



Capsid type is “flexible” and may readily adapt to new requirements as the virus evolves 

Mutant Capsid Proteins lacking most of the N-terminal domain, ND34 

 

Blue, red, and green circles show the three different types of  particles  

corresponding to the T = 1, T = 2, and T = 3 capsids, respectively. 

Capsid polymorphism : Same proteins forming different capsids  

(with different number of environments) : 

Example:  

mutant Cowpea  

Chlorotic Mottle  

Virus (CCMV) 

 
J.H. Tang et al., 

J. Struct. Biol. 154, 59 (2006) 



Virus-Like Particles using Capsid polymorphism  

J. Sun et al., PNAS 104, 1354 (2007) 

Core = gold nanoparticle functionalized with the carboxylated PEG; Coat = BMV Capsid Proteins  

Three different (but  appropriate) nanoparticle sizes  

Three different VLP with coats  T = 1; T = 2, and T = 3 

 

Drug delivery optimization 
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