

Влияние радиационного разупорядочения на структурное и магнитное состояния мультиферроика BiFe_{0.95}Mn_{0.05}O₃

OTCHET^b

<u>М. А. Сёмкин^{1*}, А. П. Носов², С. Г. Богданов²,</u> А. Е. Теплых², В. Д. Пархоменко², А. Н. Пирогов^{1, 2}

¹ Институт естественных наук УрФУ, Екатеринбург ² Институт физики металлов УрО РАН, Екатеринбург *Email: m.a.semkin@urfu.ru

Цель работы состояла в изучении влияния радиационного разупорядочения на структурное и магнитное состояния мультиферроика BiFe_{0,95}Mn_{0,05}O₃ при облучении быстрыми нейтронами с флюенсом порядка (10¹⁹ – 10²⁰) н/см²

8

Элементарная ячейка, облученного $BiFe_{0.95}Mn_{0.05}O_3$ до флюенса 4,6·10¹⁹ н/см².

BiMn_{0.05}Fe_{0.95}O₃

Рис. 1. Экспериментальная нейтронограмма необлученного образца $BiFe_{0.95}Mn_{0.05}O_3$ (красные точки), рассчитанная (черная линия), угловые позиции ядерных и магнитных Брэгговских рефлексов (зеленые черточки), дифференциальная разница между рассчитанными и экспериментальными данными (синяя линия).

Рис. 2. Экспериментальные нейтронограммы образцов BiFe $_{0.95}$ Mn $_{0.05}$ O $_3$ до облучения и после облучения быстрыми нейтронами до флюенсов: 0,8·10¹⁹, 2,0·10¹⁹ и 4,6·10¹⁹ н/см².

Введение

Мы провели нейтронографические измерения на образце BiFe_{0.95}Mn_{0.05}O₃. Облучение было проведено в реакторе ИВВ-2М (Свердловская обл., гор. Заречный) при энергии нейтронов выше 0,2 МэВ. Обработка нейтронограмм проведена с помощью пакета программ Fullprof [1].

Синтез и аттестация

При синтезировании BiFe_{0.95}Mn_{0.05}O₃ мы применяли цитратно-нитратный синтез с допированием марганца в подрешетку железа. Рентгенографический анализ показал, что в образце находится помимо основной фазы, примесная фаза силленита Bi_{12.5}Fe_{0.5}O_{19.48}. Кристаллическая структура

~

=p

5,586

4.6 н/см

Рис. 3. Параметры *а*, *b* и *с* кристаллической решетки образцов BiFe_{0.95}Mn_{0.05}O₃, в зависимости от флюенса облучения.

Табл. 1. Структурные параметры, облученного $4,6.10^{19}$ H/CM^2 , флюенса образца ДО BiFe_{0.95}Mn_{0.05}O₃

Параметр	Значение
Bi (6 <i>a</i>), z	0,1304(4)
Fe/Mn (6 <i>a</i>), z	0,260(1)
O (18 <i>b</i>), x	0,447(1)
У	0,017(1)
Z	0,989(1)
a, Å	5,594(1)
b, Å	5,594(1)
<i>c</i> , Å	13,901(1)
<i>μ</i> , μ _Б	4,7(2)
б, ед. обр. реш.	0,00324(1)
Тепловой фактор, Å ⁻¹	
Bi	0,15(2)
Fe/Mn	0,35(2)
0	0,51(0)
Фактор соответствия	
R _{Br} , %	8,3
R _f , %	5,7
R _{mag} , %	4,8
$0,3 - 0.8,10^{19} \text{ H/cm}^2$	
1 - 0.010 m/cm	
$\sim 0.2 - \Phi = 0 \text{ H/cm}^2$	
5	
501-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	-00 ⁰
	<u> </u>
0 4 8	12 16 20
μ ₀ Η, к	Э
Рис. 4. Кривые намагничивания образца	
$BiFe_{0.95}Mn_{0.05}O_3$ до облучения и после	
BiFe _{0 95} Mn _{0 05} O ₃ до облу	чения и после
ВіFe _{0.95} Mn _{0.05} O ₃ до облу облучения быстрыми не	чения и после ейтронами до

образца хорошо описывается в рамках ромбоэдрической элементарной ячейки (пространственная группа *R*3*c*), примесные фазы составляли не более 7 %.

Результаты

Расчет нейтронограмм (*puc. 1 и 2*), облученных образцов BiFe_{0.95}Mn_{0.05}O₃, показал, что помимо роста параметров решетки, заметных изменений других структурных параметров не наблюдается (см. Табл. 1). В основной фазе параметры решетки а и с возрастают на 0,2 % и 0,4 %, когда флюенс достигает, ~2,0·10¹⁹ н/см² (*рис. 3*). Магнитная структура соединения описывается вектором $k = (\delta; \delta; 0)$, где $\delta = 0,0032$.

Рост параметров решетки обусловлен накоплением радиационных дефектов. Наиболее вероятным типом дефектов, по нашему мнению, являются межузельные дефекты. Принимая во внимание результаты наших измерений полевых зависимостей намагниченности (*puc. 4*), можно предположить, что накопление дефектов вызывает появление ферромагнитной компоненты магнитного момента Fe/Mn ионов. Исходный (необлученный) феррит показывает полевую зависимость намагниченности, типичную для антиферромагнетика. Облучение быстрыми нейтронами и соответствующий рост параметров решетки приводит к возникновению намагниченности. Полевая зависимость намагниченности для этого образца имеет вид характерный для ферромагнетика.

Заключение

Результаты, следует рассматривать как предварительные данные. Тем не менее, они дают порядок флюенса (10¹⁹ – 10²⁰ н/см²) быстрых нейтронов, при котором можно ожидать возникновение спонтанной намагниченности мультиферроика BiFe_{0.95}Mn_{0.05}O₃.

Поддержка

Работа частично поддержана программой «Поток» № 01201463334 и Министерством образования и науки РФ (госконтракт с УрФУ № 1362).

[1] J. Rodriguez-Carvajal, Phys. B. 192, 55 (1993).