УГЛЕРОДНЫЙ КОМПОНЕНТ В КОМПОЗИТЕ НА ОСНОВЕ НАНОСТРУКТУРИРОВАННОЙ ЦЕЛЛЮЛОЗЫ

Логинов Д.В., Пикулев В.Б., Логинова С.В.

Петрозаводский государственный университет

В работе приведены результаты рентгенографических исследований и описаны особенности структуры компонентов композитных материалов на основе измельчённой микрокристаллической целлюлозы.

Целлюлозная матрица с наночастицами кремния отличается высокой деградационной стойкостью фотолюминесцентного сигнала. Введение фуллеренов в качестве третьей нанофракции материала, как и воздействие озона, приводит к стабилизации люминесценции при ультрафиолетовом фотовозбуждении, что может быть связано с протеканием конкурирующих процессов адсорбции водорода и кислорода на поверхности кремниевых наночастиц. Изменение ионной проводимости пористой целлюлозной матрицы при воздействии озона может быть использовано для разработки эффективных детекторов озона. Присутствие углерода в аморфно-кристаллическом виде в качестве наполнителя композита приводит к возникновению в образце не только ионной, но и электронной проводимости, однако процессы перераспределения объёмного заряда остаются зависящими исключительно от ионной составляющей тока. Увеличение общего тока, протекающего в этом случае через прессованный образец, снижает требования к усилению сигнала при разработке датчиков озона. I, отн.ед.

Описание образцов и их компонентов

Нанокристаллическая целлюлоза была получена методом ультразвукового диспергирования микрокристаллической целлюлозы в смеси соляной и серной кислот [1]. Указанным способом может быть получен порошок, состоящий из кристаллических фрагментов целлюлозы, средний размер которых не превышает 100 nm. Источником кремниевых монокристаллов был порошок кремния, приготовленный механическим и ультразвуковым диспергированием пористого кремния в растворе изопропанола. Исходный пористый кремний был приготовлен по хорошо апробированной технологии электрохимического травления монокристаллической кремниевой пластины марки КДБ-1 в спиртовом (1 : 1 vol.) растворе 40%-й НГ [1, 2]. Детально технология получения пористого кремния и наноструктурированной целлюлозы описана в [1, 2].

Образец экстракт (смесь) фуллеренов был получен в результате высокотемпературной обработки графита, путем отделения смеси фуллеренов от графитовой составляющей, с помощью органических растворителей и дальнейшим хроматическим разделением. Были ис-

Рисунок 2. Рентгенограммы: (а) двухкомпонентного нанокомпозита (1), композита №1 (2), экстракта фуллеренов (3); (б) экстракта фуллеренов (3) и теоретически рассчитанные для фуллеритов C_{60} (4) и C_{70} (5)

пользованы электроды спектральные марки СЭ d12*400 по ТУ 303-96 ИЛЕА. 757351.048.

Порошок аморфного углерода был получен в электродуговой плазме с графитовыми электродами в атмосфере гелия.

Методика приготовления композитов

Для дальнейших исследований были использованы следующие виды трёхкомпонентных композитов, приведенные в таблице 1.

Таблица 1. Способ приготовления и обозначения образцов трёхкомпонентных нанокомпозитов

Состав	Состав Способ приготовления	
Нанокремний + НКЦ + экс-	В виде прессованной таблетки	Композит № 1
тракт фуллеренов (смесь)	В виде суспензии	Композит № 1с
Нанокремний + НКЦ +	В виде прессованной таблетки	Композит № 2
аморфный углерод (сажа)		

В исследуемых образцах пропорция объёмов составляющих компонентов выглядела следующим образом: 1 часть нанокремния : 1 части углеродного порошка : 30 частям целлюлозы для композита в виде таблетки. Каждая часть компонента разводилась в одинаковом количестве растворителя (для углеродсодержащих порошков использовался тетрахлорэтан, для остальных – изопропанол), затем все три части смешивались, лёгкая фракция, не содержащая тетрахлорэтан, отделялась для использования и диспергировалась в течение 30 мин. в УЗ ванне. Полученная суспензия выливалась в чашку Петри, выпаривание растворителя происходило при комнатной температуре. Из полученного вещества светло-серого цвета формировались таблетки прессованием под давлением 0.26 МПа. Цвет получившихся таблеток варьировался от светло-коричневого до чёрного.

Результаты рентгенографиечкого эксперимента

Кривые распределения интенсивности рассеяния образцов углеродных компонентов получены на дифрактометре ДРОН-6.0 на СиКа и МоКа-излучениях в геометрии на прохождение и на отражение.

Для устранения агрегации фуллеренов использовалось диспергирование раствора в УЗ ванне в течение 60 мин. Для анализа нами использовались три исходных порошка, ИК-спектры поглощения которых приведены на рис. 1. Полученные спектры 1-3 являются хорошо известными идентификаторами фуллеренов [3].

Рисунок 3. Кривые распределения интенсивности рассеяния: (а) двухкомпонентного нанокомпозита (1), нанокомпозита №2 (2), углеродного порошка (3); (б) углеродного порошка (3) и теоретически рассчитанной для гексагонального графита (4).

Рис. 4. Кривые s – взвешенных интерференционных функций: (—) – композита № 2, (---) - теоретический расчет для механической смеси кластеров

Таблица. 2. Значения радиусов r_i и размытий σ_i координационных сфер и координационные числа N_i, рассчитанные для аморфного углерода, в сравнении с соответствующими данными для гексагонального графита; с – расстояние в сетке.

№ сф.	Гексагональный графит		Углеродный порошок		
	r _i , Å	N _i , ат.	r _i , Å	σ _i , Å	N _i , ат.
1	1.42c	3.0	1.44	0.19	2.8±0.1

2	2.46c	6.0	2.43	0.06	$4.0{\pm}0.1$
3	2.84c	3.0	2.78	0.30	5.2±0.2
4	3.35	1.0	3.30	0.00	0.8±0.1
5	3.68	15.0	3.75	0.22	10.1 ± 0.3
6	4.27	21.0	4.26	0.25	11.6 ± 0.4
7	5.01	30.0	4.99	0.40	27.4±0.3
8	5.41	6.0	5.41	0.35	2.5 ± 0.5
9	5.67c	3.0	5.72	0.28	15.1±0.5
10	6.08	30.0	6.13	0.14	14.2 ± 0.7
11	6.57	26.0	6.50	0.18	18.3±0.8
12	7.06	36.0	7.00	0.3	31.2±0.8
13	7.31	24.0	7.31	0.28	13.7±1

Рисунок 1. ИК-спектры третьего компонента нанокомпозита, использованного в исследованиях. Кривая 1 – смесь фуллеренов (экстракт, содержащий 71.31% C₆₀, 22.29% C₇₀, 3.05% C₇₆, 1.90% С₈₄, менее 1% иных примесей), 2 – порошок чистых фуллеренов С₆₀, 3 – порошок чистых фуллеренов С₇₀, 4 – порошок аморфного углерода

Сравнение кривых распределения интенсивности рассеяния I(20) двухкомпонентного нанокомпозита, композита №1 (с экстрактом фуллеренов), экстракта фуллеренов и теоретически рассчитанных рентгенограмм для фуллеритов C_{60} и C_{70} по данным работ [4], [5] представлено на рис. 2.

1. Pikulev, V. Luminescence properties of silicon-cellulose nanocomposite / V. Pikulev, S. Loginova, V. Gurtov// Nanoscale Research Letters. – 2012. – Vol. 7. – P. 426:1-6.

2. Пикулев В.Б., Логинова С.В., Гуртов В.А. Влияние естественного и стимулированного окисления на люминесцентные свойства нанокомпозитов «кремний-целлюлоза» // Письма в ЖТФ. 2012. Т. 38. № 15. С. 74-81.

3. Kuzmany, H. Infrared spectroscopy of fullerenes / H. Kuzmany, R. Winkler, T. Pichler // J. Phys.: Condens. Matter. - 1995. - Vol.7. - P. 6601-6624.

4. Dorset, D. Disorder and the molecular packing of C60 buckminsterfullerene: a direct electron-crystallographic analysis / D. L. Dorset and M. P. McCourt // Acta Cryst. - 1994. - Vol. A50. - P. 344-351.

5. Smaalen, S. Low-temperature structure of solid C70 / S. van Smaalen, V. Petricek, J. L. de Boer, M. Dusek, M. A. Verheijen, G. Meijer // Chemical Physics Letters. - 1994. - Vol. 223. - P. 323-328.